File: net_dag_utils.h

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (69 lines) | stat: -rw-r--r-- 2,146 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
#ifndef CAFFE2_CORE_NET_DAG_UTILS_H_
#define CAFFE2_CORE_NET_DAG_UTILS_H_

#include <atomic>
#include <climits>
#include <cstddef>
#include <thread> // NOLINT
#include <typeinfo>
#include <unordered_map>
#include <unordered_set>
#include <vector>

#include "c10/util/Registry.h"
#include "caffe2/core/blob.h"
#include "caffe2/core/common.h"
#include "caffe2/core/logging.h"
#include "caffe2/core/net.h"
#include "caffe2/core/observer.h"
#include "caffe2/core/operator_schema.h"
#include "caffe2/core/tensor.h"
#include "caffe2/core/workspace.h"
#include "caffe2/proto/caffe2_pb.h"
#include "caffe2/utils/simple_queue.h"

namespace caffe2 {
namespace dag_utils {

struct OperatorNode {
  unique_ptr<OperatorBase> operator_;
  vector<int> children_;
  vector<int> parents_;
  std::atomic<int> runtime_parent_count_;
  bool is_chain_start_ = false;
  std::atomic_flag scheduled_ = ATOMIC_FLAG_INIT;
};

struct OpGraphNode {
  vector<int> children_;
  vector<int> parents_;
  int visited_inputs = 0;
  int num_orig_parents;
};

using ExecutionChains = std::unordered_map<int, std::vector<int>>;

C10_EXPORT ExecutionChains computeChains(std::vector<OperatorNode>& orig_nodes);

// Instead of breaking down the DAG into chains, we partition it into clusters
// of sync ops and individual async op. This is useful for disturbuted inference
// case where we have sync and async cpu ops. Note that we have go sync each
// aysnc op instead of put them into the chain and sync its tail like GPU op,
// because CPU async ops are typically rpc calls and are not guaranteed to be
// linearized at remote site.
C10_EXPORT ExecutionChains computeGroups(std::vector<OperatorNode>& orig_nodes);

C10_EXPORT ExecutionChains singleChains(std::vector<OperatorNode>& nodes);

C10_EXPORT std::vector<OperatorNode> prepareOperatorNodes(
    const std::shared_ptr<const NetDef>& net_def,
    Workspace* ws);

std::vector<OpGraphNode> prepareChainGraphNodes(
    const std::vector<dag_utils::OperatorNode>& operator_nodes,
    const std::vector<std::vector<int>>& execution_chains);

} // namespace dag_utils
} // namespace caffe2

#endif // CAFFE2_CORE_NET_DAG_UTILS_H_