1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
|
#include "nomnigraph/Representations/NeuralNet.h"
#include "nomnigraph/Graph/Algorithms.h"
namespace nom {
namespace repr {
// NOLINTNEXTLINE(modernize-use-equals-default)
NeuralNetOperator::~NeuralNetOperator() {}
const std::string NeuralNetOperator::getName() const {
switch (getKind()) {
#include "nomnigraph/Generated/OpNames.h"
case NNKind::While:
return "While";
case NNKind::NNPhi:
return "Phi";
case NNKind::GenericOperator:
return dyn_cast<GenericOperator>(this)->getName();
default:
return "Unknown";
}
}
// NOLINTNEXTLINE(modernize-use-equals-default)
NeuralNetData::~NeuralNetData() {}
const std::string NeuralNetData::getName() const {
switch (getKind()) {
case NNDataKind::Tensor: {
return dyn_cast<Tensor>(this)->getName();
}
default:
return "";
}
}
NNGraph::NodeRef NNModule::createUniqueDataNode(const std::string& s) {
auto curr_name = s;
auto iter = 0;
bool need_name = true;
do {
need_name = false;
for (const auto& node : dataFlow.getMutableNodes()) {
if (nn::getName(node) == curr_name) {
std::stringstream ss;
ss << iter;
curr_name = s + "_" + ss.str();
iter++;
need_name = true;
break;
}
}
} while (need_name);
return dataFlow.createNode(std::make_unique<nom::repr::Tensor>(curr_name));
}
void NNModule::replaceSubgraph(
const NNSubgraph& subgraph,
const NNGraph::NodeRef& node,
const std::vector<NNGraph::NodeRef>& node_inputs,
const std::vector<NNGraph::NodeRef>& node_outputs) {
auto sg = subgraph;
auto sg_inputs = nn::getInputs(sg);
auto sg_outputs = nn::getOutputs(sg);
auto sg_inputs_copy = sg_inputs;
auto sg_outputs_copy = sg_outputs;
for (const auto& input : node_inputs) {
sg_inputs_copy.erase(input);
// outputs may contain inputs that have additional
// consumers external to the subgraph
sg_outputs_copy.erase(input);
}
assert(sg_inputs_copy.size() == 0 && "Not all inputs were listed");
for (const auto& output : node_outputs) {
sg_outputs_copy.erase(output);
}
assert(sg_outputs_copy.size() == 0 && "Not all outputs were listed");
for (auto& input : node_inputs) {
dataFlow.createEdge(input, node);
sg.removeNode(input);
}
for (auto& output : node_outputs) {
if (sg_inputs.count(output)) {
dataFlow.createEdge(node, createUniqueDataNode());
continue;
}
dataFlow.createEdge(node, output);
sg.removeNode(output);
}
deleteSubgraph(sg);
}
void NNModule::deleteSubgraph(const NNSubgraph& subgraph) {
dataFlow.deleteNodes(subgraph.getNodes());
}
namespace nn {
bool hasProducer(NNGraph::NodeRef n) {
return n->getInEdges().size() != 0;
}
NNGraph::NodeRef getProducer(NNGraph::NodeRef n) {
assert(
is<NeuralNetData>(n) &&
"getProducer only works with NeuralNetData types.");
auto inEdges = n->getInEdges();
assert(inEdges.size() > 0 && "Tensor does not have a producer.");
assert(
inEdges.size() == 1 &&
"Malformed NNGraph, NeuralNetData has multiple producers.");
return inEdges.front()->tail();
}
bool hasConsumer(NNGraph::NodeRef n) {
return n->getOutEdges().size() != 0;
}
std::vector<NNGraph::NodeRef> getConsumers(NNGraph::NodeRef n) {
assert(
is<NeuralNetData>(n) &&
"getProducer only works with NeuralNetData types.");
std::vector<NNGraph::NodeRef> out;
for (auto outEdge : n->getOutEdges()) {
out.emplace_back(outEdge->head());
}
return out;
}
bool hasInputs(NNGraph::NodeRef n) {
return n->getInEdges().size() != 0;
}
std::vector<NNGraph::NodeRef> getInputs(NNGraph::NodeRef n) {
assert(
is<NeuralNetOperator>(n) &&
"getInputs only works with NeuralNetOperator types.");
std::vector<NNGraph::NodeRef> out;
for (auto inEdge : n->getInEdges()) {
out.emplace_back(inEdge->tail());
}
return out;
}
std::vector<NNGraph::NodeRef> getOutputs(NNGraph::NodeRef n) {
assert(
is<NeuralNetOperator>(n) &&
"getOutputs only works with NeuralNetOperator types.");
std::vector<NNGraph::NodeRef> out;
for (auto outEdge : n->getOutEdges()) {
out.emplace_back(outEdge->head());
}
return out;
}
std::string getName(NNGraph::NodeRef n) {
if (is<NeuralNetData>(n)) {
return nn::get<NeuralNetData>(n)->getName();
} else if (is<NeuralNetOperator>(n)) {
return nn::get<NeuralNetOperator>(n)->getName();
}
return "Unknown";
}
std::set<NNGraph::NodeRef> getInputs(const NNSubgraph& subgraph) {
std::set<NNGraph::NodeRef> subgraph_inputs;
for (const auto& node : subgraph.getNodes()) {
NOM_REQUIRE_OR_CONT(is<NeuralNetData>(node));
if (hasProducer(node)) {
if (!subgraph.hasNode(getProducer(node))) {
subgraph_inputs.insert(node);
}
} else {
subgraph_inputs.insert(node);
}
}
return subgraph_inputs;
}
std::set<NNGraph::NodeRef> getOutputs(const NNSubgraph& subgraph) {
std::set<NNGraph::NodeRef> subgraph_outputs;
for (const auto& n : subgraph.getNodes()) {
NOM_REQUIRE_OR_CONT(is<NeuralNetData>(n));
if (hasConsumer(n)) {
for (const auto& consumer : getConsumers(n)) {
if (!subgraph.hasNode(consumer)) {
subgraph_outputs.insert(n);
}
}
} else {
subgraph_outputs.insert(n);
}
}
return subgraph_outputs;
}
void replaceProducer(
NNGraph::NodeRef tensorNode,
NNGraph::NodeRef newProducer) {
assert(
is<NeuralNetData>(tensorNode) &&
"First argument must contain NeuralNetData");
auto inEdges = tensorNode->getInEdges();
assert(
inEdges.size() == 1 && "Tensor node passed in does not have a producer");
auto edge = inEdges.at(0);
auto prevProducer = edge->tail();
prevProducer->removeOutEdge(edge);
edge->setTail(newProducer);
newProducer->addOutEdge(edge);
}
void replaceAllUsesWith(
NNGraph::NodeRef oldTensorNode,
NNGraph::NodeRef newTensorNode) {
const auto edges = oldTensorNode->getOutEdges();
for (const auto& edge : edges) {
edge->setTail(newTensorNode);
oldTensorNode->removeOutEdge(edge);
newTensorNode->addOutEdge(edge);
}
}
void replaceAsConsumer(
NNGraph::NodeRef oldConsumer,
NNGraph::NodeRef newConsumer) {
const auto edges = oldConsumer->getInEdges();
for (const auto& edge : edges) {
edge->setHead(newConsumer);
oldConsumer->removeInEdge(edge);
newConsumer->addInEdge(edge);
}
}
NNGraph::NodeRef
createOutput(NNModule* nn, NNGraph::NodeRef producer, std::string name) {
auto outputNode =
nn->dataFlow.createNode(std::make_unique<nom::repr::Tensor>(name));
nn->dataFlow.createEdge(producer, outputNode);
return outputNode;
}
// Get all nodes tracked by CF graph
static std::unordered_set<repr::NNGraph::NodeRef> getTrackedNodes(
repr::NNCFGraph& cf) {
std::unordered_set<repr::NNGraph::NodeRef> cfTrackedNodes;
for (const auto& bbNode : cf.getMutableNodes()) {
auto& bb = bbNode->data();
for (const auto node : bb.getInstructions()) {
cfTrackedNodes.insert(node);
}
}
return cfTrackedNodes;
}
static size_t coalesceInsertedDataDependenciesHelper(repr::NNModule* m) {
auto cfTrackedNodes = getTrackedNodes(m->controlFlow);
for (auto& bbNode : m->controlFlow.getMutableNodes()) {
auto bb = bbNode->mutableData();
// We mutate the instructions of the bb, so we copy here.
// TODO make this an iterator and simply promote it on insertion.
auto instrsCopy = bb->getInstructions();
for (const auto instr : instrsCopy) {
for (const auto input : repr::nn::getInputs(instr)) {
if (!repr::nn::hasProducer(input)) {
continue;
}
auto producer = repr::nn::getProducer(input);
if (!cfTrackedNodes.count(producer)) {
bb->insertInstructionBefore(producer, instr);
cfTrackedNodes.insert(producer);
}
}
}
}
return cfTrackedNodes.size();
}
// TODO: move this to more generic location.
// TODO: [algo] improve this algorithm, as it is horrendously inefficient.
void coalesceInsertedDataDependencies(repr::NNModule* m) {
size_t oldSize = 0;
size_t newSize = 0;
do {
oldSize = newSize;
newSize = coalesceInsertedDataDependenciesHelper(m);
} while (newSize != oldSize);
// Now we track new nodes that have no relationship to the old CFGraph
auto cfTrackedNodes = getTrackedNodes(m->controlFlow);
std::unordered_set<repr::NNGraph::NodeRef> dfNodes;
for (auto node : m->dataFlow.getMutableNodes()) {
if (repr::nn::is<NeuralNetOperator>(node) && !cfTrackedNodes.count(node)) {
dfNodes.insert(node);
}
}
auto newBbNode = m->controlFlow.createAnonymousFunction();
auto sccs = algorithm::tarjans(&m->dataFlow);
for (auto iter = sccs.rbegin(); iter != sccs.rend(); ++iter) {
for (auto node : iter->getNodes()) {
if (dfNodes.count(node)) {
auto currentBasicBlock = newBbNode->mutableData();
currentBasicBlock->pushInstructionNode(node);
}
}
}
// Finally we reconcile any data dependency issues (if we can).
for (auto& bbNode : m->controlFlow.getMutableNodes()) {
auto bb = bbNode->mutableData();
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
int permutation;
do {
permutation = 0;
std::unordered_set<repr::NNGraph::NodeRef> seen;
for (auto instr_iter = bb->getMutableInstructions()->begin();
instr_iter != bb->getMutableInstructions()->end();
++instr_iter) {
// This cannot be auto& because *iter is pure R-ref
auto instr = *instr_iter;
for (auto& output : getOutputs(instr)) {
for (auto& consumer : getConsumers(output)) {
if (seen.count(consumer)) {
bb->moveInstructionBefore(instr, consumer);
++permutation;
}
}
}
seen.insert(instr);
}
} while (permutation);
}
}
bool hasSingleOutputAndConsumer(NNGraph::NodeRef nodeRef) {
auto nodeOutputs = nn::getOutputs(nodeRef);
NOM_REQUIRE_OR_RET_FALSE(nodeOutputs.size() == 1);
auto nodeConsumers = nn::getConsumers(nodeOutputs.front());
return nodeConsumers.size() == 1;
}
bool hasUniqueConsumer(NNGraph::NodeRef nodeRef) {
auto nodeOutputs = nn::getOutputs(nodeRef);
NNGraph::NodeRef nodeConsumer = nullptr;
for (auto nodeOutput : nodeOutputs) {
for (auto consumer : nn::getConsumers(nodeOutput)) {
if (nodeConsumer && consumer && consumer != nodeConsumer) {
return false;
}
nodeConsumer = consumer;
}
}
return true;
}
NNMatchPredicate matchExternalTensorNode() {
return NNMatchPredicate(nn::is<Tensor>).nonTerminal().excludeFromSubgraph();
}
} // namespace nn
} // namespace repr
} // namespace nom
|