File: NeuralNetTest.cc

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (97 lines) | stat: -rw-r--r-- 2,824 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
#include <algorithm>
#include <memory>

#include "test_util.h"

#include "nomnigraph/Representations/NeuralNet.h"
#include "nomnigraph/Transformations/SubgraphMatcher.h"

#include <gtest/gtest.h>

using namespace nom;
using namespace nom::repr;
using namespace nom::repr::nn;

// Test for the NNGraph subgraph matching APIs.
TEST(NeuralNetGraph, ReplaceGraph) {
  NNGraph graph;

  auto input1 = graph.createNode(std::make_unique<Tensor>("input1"));
  auto input2 = graph.createNode(std::make_unique<Tensor>("input2"));
  // Test renaming blob
  nn::get<Tensor>(input2)->setName("input2_renamed");
  auto sum = graph.createNode(std::make_unique<Sum>());
  auto sumOutput = graph.createNode(std::make_unique<Tensor>("sumOutput"));
  auto relu = graph.createNode(std::make_unique<Relu>());
  auto reluOutput = graph.createNode(std::make_unique<Tensor>("reluOutput"));

  graph.createEdge(input1, sum);
  graph.createEdge(input2, sum);
  graph.createEdge(sum, sumOutput);
  graph.createEdge(sumOutput, relu);
  graph.createEdge(relu, reluOutput);

  /* input1       input2
         \        /
          \      /
            sum
             |
             |
        sumOutput
             |
           relu
             |
        reluOutput
  */

  auto mg = NNMatchGraph();
  auto matchSumInput =
      mg.createNode(std::move(matchExternalTensorNode().count(2)));
  auto matchSum = mg.createNode(nn::is<Sum>);
  mg.createEdge(matchSumInput, matchSum);

  auto matchSumOutput = mg.createNode(nn::is<Tensor>);
  mg.createEdge(matchSum, matchSumOutput);

  auto matchRelu = mg.createNode(nn::is<Relu>);
  mg.createEdge(matchSumOutput, matchRelu);

  auto matchRoot = matchRelu;
  EXPECT_FALSE(mg.isSubgraphMatch(sum, matchRoot).isMatch());
  EXPECT_FALSE(mg.isSubgraphMatch(reluOutput, matchRoot).isMatch());
  EXPECT_FALSE(mg.isSubgraphMatch(input1, matchRoot).isMatch());

  EXPECT_TRUE(mg.isSubgraphMatch(relu, matchRoot).isMatch());

  mg.replaceSubgraph(
      graph,
      matchRoot,
      [&matchSumOutput](
          NNGraph& g,
          NNGraph::NodeRef relu,
          const NNMatchGraph::SubgraphMatchResultType& matchResult) {
        auto fusedNode = g.createNode(std::make_unique<SumRelu>());
        auto sumNode =
            getProducer(matchResult.getMatchNodeMap()->at(matchSumOutput));
        g.replaceOutEdges(relu, fusedNode);
        g.replaceInEdges(sumNode, fusedNode);
        g.deleteNodes(matchResult.getMatchedSubgraph()->getNodes());
        return true;
      });

  /*
      Fused graph:

      input1       input2
         \        /
          \      /
          sumRelu
             |
             |
           output
  */
  EXPECT_EQ(graph.getNodesCount(), 4);
  auto fusedNode = getProducer(reluOutput);
  EXPECT_TRUE(is<SumRelu>(fusedNode));
  EXPECT_EQ(getInputs(fusedNode).size(), 2);
}