1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646
|
#include <algorithm>
#include <functional>
#include "test_util.h"
#include "nomnigraph/Transformations/SubgraphMatcher.h"
#include <gtest/gtest.h>
namespace nom {
namespace matcher {
using NodeType = std::string;
using Criteria = std::string;
using TestGraph = Graph<NodeType>;
using TestMatchGraph = MatchGraph<TestGraph>;
using TestMatchPredicate = MatchPredicate<TestGraph>;
// Have just one TestMatchGraph in the tests to make it less verbose to create
// the match graphs.
TestMatchGraph graph;
// Call reset before creating a new TestMatchGraph.
void reset() {
graph = TestMatchGraph();
}
// Node matches a criteria (string) if the data string is the same as the
// criteria. Special case: "*" will match any thing.
TestMatchPredicate testMatchPredicate(const Criteria& criteria) {
return TestMatchPredicate([criteria](TestGraph::NodeRef node) {
return criteria == "*" || criteria == node->data();
});
}
Criteria any() {
return Criteria("*");
}
// Helper methods to make it less verbose to create match graphs.
TestMatchGraph::NodeRef Tree(
const Criteria& root,
const std::vector<TestMatchGraph::NodeRef>& children = {},
int count = 1) {
auto result =
graph.createNode(std::move(testMatchPredicate(root).count(count)));
for (auto& child : children) {
graph.createEdge(result, child);
}
return result;
}
TestMatchGraph::NodeRef NonTerminal(const Criteria& root, int count = 1) {
return graph.createNode(
std::move(testMatchPredicate(root).count(count).nonTerminal()));
}
std::map<std::string, std::string> TestGraphNodePrinter(
TestGraph::NodeRef node) {
std::map<std::string, std::string> labelMap;
labelMap["label"] = node->data();
return labelMap;
};
// Attempts to create a realistic dataflow graph that shows a fuse procedure.
struct DataFlowTestGraph {
const int numInputs = 4;
TestGraph graph;
TestGraph::NodeRef opB;
TestGraph::NodeRef opF;
TestGraph::NodeRef opC;
TestGraph::NodeRef opG;
TestGraph::NodeRef dataOut;
// Realistic data flow test graph.
/*
+---------------+
| |
| +---------+ | +---------+
+---------------------+ | input_A | | | input_B |
| +---------+ | +---------+
| | | |
| | | |
| v v v
+---------++---------+ +-------------------------+ +--------+
| input_C || input_D | --> | opC | --> | dataC2 |
+---------++---------+ +-------------------------+ +--------+
|
|
v
+---------+
| dataC | -+
+---------+ |
| |
| |
v |
+---------+ |
| opB | <+
+---------+
|
|
v
+---------+
| dataB |
+---------+
|
|
v
+---------+
| opF |
+---------+
|
|
v
+---------+
| dataF |
+---------+
|
|
v
+---------+ +---------+
| dataI | --> | opG |
+---------+ +---------+
|
|
v
+---------+
| dataOut |
+---------+
*/
DataFlowTestGraph() {
opC = graph.createNode("opC");
for (int i = 0; i < numInputs; i++) {
auto dataInput = graph.createNode("input");
graph.createEdge(dataInput, opC);
}
auto dataC = graph.createNode("dataC");
auto dataC2 = graph.createNode("dataC2");
graph.createEdge(opC, dataC);
graph.createEdge(opC, dataC2);
opB = graph.createNode("opB");
// There are 2 edges
graph.createEdge(dataC, opB);
graph.createEdge(dataC, opB);
auto dataB = graph.createNode("dataB");
graph.createEdge(opB, dataB);
opF = graph.createNode("opF");
graph.createEdge(dataB, opF);
auto dataF = graph.createNode("dataF");
graph.createEdge(opF, dataF);
auto dataI = graph.createNode("dataI");
opG = graph.createNode("opG");
graph.createEdge(dataF, opG);
graph.createEdge(dataI, opG);
dataOut = graph.createNode("dataOut");
graph.createEdge(opG, dataOut);
// Use nom::converters::convertToDotString(&graph, TestGraphNodePrinter)
// to visualize the graph.
}
};
struct DataFlowTestGraphCriteria {
TestMatchGraph::NodeRef matchOpCOutput;
TestMatchGraph::NodeRef matchOpG;
DataFlowTestGraphCriteria() {
auto matchOpCInputs =
graph.createNode(std::move(testMatchPredicate(Criteria("input"))
.starCount()
.nonTerminal()
.excludeFromSubgraph()));
auto matchOpC = graph.createNode(testMatchPredicate("opC"));
graph.createEdge(matchOpCInputs, matchOpC);
matchOpCOutput = graph.createNode(testMatchPredicate(any()));
graph.createEdge(matchOpC, matchOpCOutput);
auto matchOpB = graph.createNode(testMatchPredicate("opB"));
graph.createEdge(matchOpCOutput, matchOpB);
graph.createEdge(matchOpCOutput, matchOpB);
auto matchOpBOutput = graph.createNode(testMatchPredicate(any()));
graph.createEdge(matchOpB, matchOpBOutput);
auto matchOpF = graph.createNode(testMatchPredicate("opF"));
graph.createEdge(matchOpBOutput, matchOpF);
auto matchOpFOutput = graph.createNode(testMatchPredicate(any()));
graph.createEdge(matchOpF, matchOpFOutput);
matchOpG = graph.createNode(testMatchPredicate("opG"));
auto matchDataI = graph.createNode(std::move(
testMatchPredicate(any()).nonTerminal().excludeFromSubgraph()));
graph.createEdge(matchOpFOutput, matchOpG);
graph.createEdge(matchDataI, matchOpG);
}
};
TestGraph::NodeRef getInNode(TestGraph::NodeRef node, int index) {
return node->getInEdges()[index]->tail();
}
bool isSubgraphMatch(
TestGraph::NodeRef nodeRef,
const TestMatchGraph::NodeRef& criteria,
bool invertGraphTraversal = true) {
return graph.isSubgraphMatch(nodeRef, criteria, invertGraphTraversal)
.isMatch();
}
} // namespace matcher
} // namespace nom
using namespace nom::matcher;
// Simple test cases for node matching criteria.
TEST(SubgraphMatcher, IsNodeMatch) {
TestGraph g;
auto n1 = g.createNode("Hello");
auto n2 = g.createNode("Le");
g.createEdge(n1, n2);
EXPECT_TRUE(graph.isNodeMatch(n1, testMatchPredicate("Hello")));
EXPECT_FALSE(graph.isNodeMatch(n1, testMatchPredicate("G")));
EXPECT_TRUE(graph.isNodeMatch(n2, testMatchPredicate("Le")));
EXPECT_FALSE(graph.isNodeMatch(n2, testMatchPredicate("le")));
}
// Test subtree matching with a simple tree graph.
TEST(SubgraphMatcher, IsSubtreeMatch) {
TestGraph graph;
auto n1 = graph.createNode("1");
auto n2 = graph.createNode("2");
auto n3 = graph.createNode("3");
auto n4 = graph.createNode("4");
auto n5 = graph.createNode("5");
auto n6 = graph.createNode("6");
auto n7 = graph.createNode("7");
graph.createEdge(n1, n2);
graph.createEdge(n2, n3);
graph.createEdge(n2, n4);
graph.createEdge(n1, n5);
graph.createEdge(n5, n6);
graph.createEdge(n5, n7);
/* N1
/ \
N2 N5
/ \ / \
N3 N4 N6 N7
*/
reset();
auto subtree = Tree(any(), {Tree(any()), Tree(any())});
EXPECT_FALSE(isSubgraphMatch(n1, subtree, false));
EXPECT_FALSE(isSubgraphMatch(n4, subtree, false));
EXPECT_TRUE(isSubgraphMatch(n2, subtree, false));
EXPECT_TRUE(isSubgraphMatch(n5, subtree, false));
reset();
subtree = Tree(Criteria("5"), {Tree(any()), Tree(any())});
EXPECT_FALSE(isSubgraphMatch(n2, subtree, false));
EXPECT_TRUE(isSubgraphMatch(n5, subtree, false));
reset();
subtree = Tree(any(), {Tree(any()), Tree(Criteria("4"))});
EXPECT_TRUE(isSubgraphMatch(n2, subtree, false));
EXPECT_FALSE(isSubgraphMatch(n5, subtree, false));
reset();
// Accepts non terminal node
subtree = Tree(any(), {NonTerminal(any()), NonTerminal(any())});
EXPECT_TRUE(isSubgraphMatch(n1, subtree, false));
EXPECT_TRUE(isSubgraphMatch(n2, subtree, false));
EXPECT_TRUE(isSubgraphMatch(n5, subtree, false));
EXPECT_FALSE(isSubgraphMatch(n3, subtree, false));
EXPECT_FALSE(isSubgraphMatch(n4, subtree, false));
EXPECT_FALSE(isSubgraphMatch(n6, subtree, false));
EXPECT_FALSE(isSubgraphMatch(n7, subtree, false));
}
// Test subtree matching in which * (repeated) matching of children is allowed.
TEST(SubgraphMatcher, IsSubtreeMatchRepeated) {
TestGraph graph;
auto n1 = graph.createNode("1");
auto n2 = graph.createNode("2");
auto n3A = graph.createNode("3");
auto n3B = graph.createNode("3");
auto n4 = graph.createNode("4");
auto n5A = graph.createNode("5");
auto n5B = graph.createNode("5");
auto n5C = graph.createNode("5");
graph.createEdge(n1, n2);
graph.createEdge(n1, n3A);
graph.createEdge(n1, n3B);
graph.createEdge(n1, n4);
graph.createEdge(n1, n4);
graph.createEdge(n1, n5A);
graph.createEdge(n1, n5B);
graph.createEdge(n1, n5C);
reset();
auto subtree = Tree(any(), {Tree(Criteria("2"))});
EXPECT_FALSE(isSubgraphMatch(n1, subtree, false));
reset();
subtree =
Tree(any(), {Tree(Criteria("2"), {}, TestMatchPredicate::kStarCount)});
EXPECT_FALSE(isSubgraphMatch(n1, subtree, false));
reset();
// clang-format off
subtree = Tree(any(), {
Tree(Criteria("2")),
Tree(Criteria("3"), {}, 2),
Tree(Criteria("4"), {}, 2),
Tree(Criteria("5"), {}, 3)
});
EXPECT_TRUE(isSubgraphMatch(n1, subtree, false));
reset();
subtree = Tree(any(), {
Tree(Criteria("2")),
Tree(Criteria("3"), {}, 2),
Tree(Criteria("4"), {}, 2),
Tree(Criteria("5"), {}, 4)
});
// Failes because exepected 4 matches of n5 but found 3.
EXPECT_FALSE(isSubgraphMatch(n1, subtree, false));
reset();
subtree = Tree(any(), {
Tree(Criteria("2")),
Tree(Criteria("3"), {}, 2),
Tree(Criteria("4"), {}, 2),
Tree(Criteria("5"), {}, TestMatchPredicate::kStarCount)
});
EXPECT_TRUE(isSubgraphMatch(n1, subtree, false));
reset();
subtree = Tree(any(), {
Tree(Criteria("2")),
Tree(Criteria("3"), {}, TestMatchPredicate::kStarCount),
Tree(Criteria("4"), {}, 2),
Tree(Criteria("5"), {}, TestMatchPredicate::kStarCount)
});
EXPECT_TRUE(isSubgraphMatch(n1, subtree, false));
reset();
subtree = Tree(any(), {
Tree(Criteria("2")),
Tree(Criteria("3"), {}, TestMatchPredicate::kStarCount),
});
// Fails because there are unmatched edges.
EXPECT_FALSE(isSubgraphMatch(n1, subtree, false));
reset();
subtree = Tree(any(), {
Tree(Criteria("2")),
Tree(Criteria("3"), {}, 2),
Tree(Criteria("4")),
Tree(Criteria("5"), {}, 3)
});
// Fails because the count is wrong; we have 2 edges to node N4 while
// the pattern expects only 1.
EXPECT_FALSE(isSubgraphMatch(n1, subtree, false));
// clang-format on
}
TEST(SubgraphMatcher, DagMatching) {
reset();
// clang-format off
auto n4match = Tree(Criteria("4"), {
Tree(Criteria("5"))
});
auto subgraph = Tree(Criteria("1"), {
Tree(Criteria("2"), {
n4match
}),
Tree(Criteria("3"), {
n4match
}),
});
// clang-format on
{
TestGraph graph;
auto n1 = graph.createNode("1");
auto n2 = graph.createNode("2");
auto n3 = graph.createNode("3");
auto n4 = graph.createNode("4");
auto n5 = graph.createNode("5");
graph.createEdge(n1, n2);
graph.createEdge(n1, n3);
graph.createEdge(n2, n4);
graph.createEdge(n3, n4);
graph.createEdge(n4, n5);
/* N1
/ \
N2 N3
\ /
N4
|
N5
*/
EXPECT_TRUE(isSubgraphMatch(n1, subgraph, false));
}
{
TestGraph graph;
auto n1 = graph.createNode("1");
auto n2 = graph.createNode("2");
auto n3 = graph.createNode("3");
auto n4A = graph.createNode("4");
auto n4B = graph.createNode("4");
auto n5 = graph.createNode("5");
graph.createEdge(n1, n2);
graph.createEdge(n1, n3);
graph.createEdge(n2, n4A);
graph.createEdge(n3, n4B);
graph.createEdge(n4A, n5);
graph.createEdge(n4B, n5);
/* N1
/ \
N2 N3
/ \
N4A N4B
\ /
N5
*/
// This should fail because n4A and n4B are not the same node.
EXPECT_FALSE(isSubgraphMatch(n1, subgraph, false));
}
}
TEST(SubgraphMatcher, DagMatchingMultiEdges) {
reset();
// clang-format off
auto n2match = Tree(Criteria("2"));
auto subgraph = Tree(Criteria("1"), {
n2match,
n2match
});
// clang-format on
{
TestGraph graph;
auto n1 = graph.createNode("1");
auto n2 = graph.createNode("2");
graph.createEdge(n1, n2);
graph.createEdge(n1, n2);
EXPECT_TRUE(isSubgraphMatch(n1, subgraph, false));
}
{
TestGraph graph;
auto n1 = graph.createNode("1");
auto n2A = graph.createNode("2");
auto n2B = graph.createNode("2");
graph.createEdge(n1, n2A);
graph.createEdge(n1, n2B);
EXPECT_FALSE(isSubgraphMatch(n1, subgraph, false));
}
}
TEST(SubgraphMatcher, DagMatchingRandomLargeGraph) {
reset();
// clang-format off
auto n4match = Tree(any(), {
NonTerminal(any(), 1)
});
auto subtree = Tree(any(), {
Tree(any(), {
n4match
}),
Tree(any(), {
n4match
}),
});
// clang-format on
/* N1
/ \
N2 N3
\ /
N4
|
N5
*/
// Look for the diamond pattern in a random large graph.
TestGraph graph;
std::vector<nom::Graph<std::string>::NodeRef> nodes;
// Here we create a test graph and then randomly embed the above
// pattern into the graph repeatedly (numPatterns times).
// The actual number of match will be less than numPatterns because the
// embedded patterns can overlap which become unmatched subgraphs.
const int numNodes = 50000;
const int numPatterns = 5000;
for (int i = 0; i < numNodes; i++) {
auto node = graph.createNode("Node");
nodes.emplace_back(node);
}
TestRandom random(517);
for (int i = 0; i < numPatterns; i++) {
std::vector<int> nodeIdx;
for (int k = 0; k < 5; k++) {
// NOLINTNEXTLINE(performance-inefficient-vector-operation)
nodeIdx.emplace_back(random.nextInt() % numNodes);
}
graph.createEdge(nodes[nodeIdx[0]], nodes[nodeIdx[1]]);
graph.createEdge(nodes[nodeIdx[0]], nodes[nodeIdx[2]]);
graph.createEdge(nodes[nodeIdx[1]], nodes[nodeIdx[3]]);
graph.createEdge(nodes[nodeIdx[2]], nodes[nodeIdx[3]]);
graph.createEdge(nodes[nodeIdx[3]], nodes[nodeIdx[4]]);
}
EXPECT_EQ(graph.getEdgesCount(), 5 * numPatterns);
int countMatch = 0;
for (auto node : graph.getMutableNodes()) {
if (isSubgraphMatch(node, subtree, false)) {
countMatch++;
}
}
EXPECT_EQ(countMatch, 1072);
}
TEST(SubgraphMatcher, IsSubtreeMatchRealistic) {
reset();
auto graph = DataFlowTestGraph();
auto subtree = DataFlowTestGraphCriteria().matchOpG;
EXPECT_FALSE(isSubgraphMatch(graph.opF, subtree));
EXPECT_FALSE(isSubgraphMatch(graph.opC, subtree));
EXPECT_FALSE(isSubgraphMatch(graph.opB, subtree));
EXPECT_FALSE(isSubgraphMatch(graph.dataOut, subtree));
EXPECT_TRUE(isSubgraphMatch(graph.opG, subtree));
}
TEST(SubgraphMatcher, ReplaceGraphRealistic) {
reset();
auto testGraph = DataFlowTestGraph();
auto subtree = DataFlowTestGraphCriteria();
graph.replaceSubgraph(
testGraph.graph,
subtree.matchOpG,
[subtree](
TestGraph& g,
TestGraph::NodeRef opG,
const TestMatchGraph::SubgraphMatchResultType& matchResult) {
auto fusedNode = g.createNode("opFused");
auto opC = getInNode(
matchResult.getMatchNodeMap()->at(subtree.matchOpCOutput), 0);
g.replaceOutEdges(opG, fusedNode);
g.replaceInEdges(opG, fusedNode);
g.replaceInEdges(opC, fusedNode);
g.deleteNodes(matchResult.getMatchedSubgraph()->getNodes());
return true;
});
// Now the nodes are:
// - NumInputs input nodes
// - dataI node
// - fused node
// - output node
// - dataC2 node
auto nodes = testGraph.graph.getMutableNodes();
// Test that the graph is transformed as expected.
EXPECT_EQ(nodes.size(), testGraph.numInputs + 4);
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
TestGraph::NodeRef opFused;
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
TestGraph::NodeRef dataI;
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
TestGraph::NodeRef dataOut;
for (auto node : nodes) {
if (node->data() == "opFused") {
opFused = node;
} else if (node->data() == "dataOut") {
dataOut = node;
} else if (node->data() == "dataI") {
dataI = node;
}
}
EXPECT_EQ(getInNode(dataOut, 0), opFused);
EXPECT_EQ(opFused->getInEdges().size(), testGraph.numInputs + 1);
EXPECT_EQ(getInNode(opFused, 0), dataI);
for (int i = 1; i <= testGraph.numInputs; i++) {
EXPECT_EQ(getInNode(opFused, i)->data(), "input");
}
// Use nom::converters::convertToDotString(&graph.graph, TestGraphNodePrinter)
// to visualize. The transformed graph looks like This
/*
+---------++---------+
| input_A || input_D |
+---------++---------+
| |
| |
v v
+---------+ +--------------------+ +---------+
| input_B | --> | opFused | <-- | input_C |
+---------+ +--------------------+ +---------+
| ^
| |
v |
+---------++---------+
| dataOut || dataI |
+---------++---------+
*/
}
|