1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
|
#ifndef CAFFE2_CORE_OPERATOR_SCHEMA_H_
#define CAFFE2_CORE_OPERATOR_SCHEMA_H_
#include <climits>
#include <functional>
#include <initializer_list>
#include <ostream>
#include <set>
#include <unordered_map>
#include <vector>
#include <c10/util/irange.h>
#include <c10/util/Registry.h>
#include <caffe2/core/common.h>
#include <caffe2/core/logging.h>
#include <caffe2/core/types.h>
#include <caffe2/proto/caffe2_pb.h>
#include <caffe2/utils/filler.h>
#include <caffe2/utils/proto_utils.h>
namespace caffe2 {
// A const value returned by OpSchema::CalculateOutput() if the number of
// output cannot be determined.
constexpr int kCannotComputeNumOutputs = -1;
/**
* @brief A class to record the schema of an op.
*
* OpSchema records the common interface of an op specified by its name. This
* is optional for each operator implemented in Caffe2 but is strongly
* recommended.
*
* To register an OpSchema, one can use the macro OPERATOR_SCHEMA(name) and
* then append the various functions in the class. For example, for an op
* that takes in two inputs, one output, and the first input and output
* could be in-place, can be written as
*
* OPERATOR_SCHEMA(name)
* .NumInputs(2).NumOutputs(1).AllowInplace({{0, 0}});
*/
class TORCH_API OpSchema {
public:
OpSchema() : OpSchema("unknown", "unknown", 0) {}
OpSchema(const string& type, const string& file, const int line);
/**
* @brief Returns the file that the op schema is registered from.
*/
inline const string& file() const {
return file_;
}
/**
* @brief Returns the line in file that the op schema is registered from.
*/
inline int line() const {
return line_;
}
/**
* @brief Returns the docstring of the op schema.
*/
inline const char* doc() const {
return doc_.empty() ? nullptr : doc_.c_str();
}
/**
* @brief Verifies if an operator definition protobuf matches the pattern
* specified in the schema.
*/
bool Verify(const OperatorDef& def) const;
// Functions to set the property of the operator schemas.
// Sets the number of inputs, either a fixed number or a min and a max.
/**
* @brief A single input.
*/
OpSchema& NumInputs(int n);
/**
* @brief Input could be in range [min, max], inclusive.
*/
OpSchema& NumInputs(int min, int max);
/**
* @brief Input could be one of the values specified in allowed_input_nums.
*/
OpSchema& NumInputs(set<int> allowed_input_nums);
/**
* @brief Input is checked with a specified function.
*/
OpSchema& NumInputs(std::function<bool(int)> func);
// Sets the number of outputs, either a fixed number, a min and a max,
// or a function that takes in the input number and produces an output
// number. Use only one function in the set below.
/**
* @brief A single output.
*/
OpSchema& NumOutputs(int n);
/**
* @brief Output could be in range [min, max], inclusive.
*/
OpSchema& NumOutputs(int min, int max);
/**
* @brief Output could be one of the values specified in allowed_output_nums.
*/
OpSchema& NumOutputs(set<int> allowed_output_nums);
/**
* @brief Output is checked with a specified function.
*/
OpSchema& NumOutputs(std::function<bool(int)> func);
/**
* @brief Relationship between inputs and outputs is checked with a specified
* function.
*/
OpSchema& NumInputsOutputs(std::function<bool(int, int)> func);
// Set the function that can calculate the number of output based on the
// number of input. Use only one function in the set below.
/**
* @brief Set the output calculator to a user-defined function.
*/
OpSchema& OutputCalculator(std::function<int(int)> calc);
/**
* @brief Set the number of outputs to be the same as the number of inputs.
*/
OpSchema& SameNumberOfOutput();
// Sets the rule to allow optional in-place operation.
OpSchema& AllowInplace(std::function<bool(int, int)> inplace);
OpSchema& AllowInplace(set<std::pair<int, int>> inplace);
OpSchema& AllowOneToOneInplace();
// Sets the rule to enforce in-place operation.
OpSchema& EnforceInplace(std::function<bool(int, int)> inplace);
OpSchema& EnforceInplace(set<std::pair<int, int>> inplace);
OpSchema& EnforceOneToOneInplace();
// Functions to deal with type and shape inference. Basically, this registers
// a function that takes in an OperatorDef and a series of input type and
// shape specified by TensorProto objects (whose data fields are empty), and
// produces a series of output type and shape.
typedef std::function<
vector<TensorShape>(const OperatorDef&, const vector<TensorShape>&)>
TensorInferenceFunctionType;
/**
* @brief Sets the tensor inference function, which is a std::function object
* defined in operator_schema.h.
*/
OpSchema& TensorInferenceFunction(TensorInferenceFunctionType function);
/**
* A wrapper that makes an infer tensor function to return unknown
* shape for all outputs if any one of the inputs has unknown shape
*/
static TensorInferenceFunctionType NeedsAllInputShapes(
TensorInferenceFunctionType f);
/**
* @brief Sets the corresponding onnx schema name
*/
OpSchema& InheritOnnxSchema(const std::string& onnx_schema_name);
/**
* @brief Shortcut to InheritOnnxSchema(type_)
*/
OpSchema& InheritOnnxSchema() {
return InheritOnnxSchema(type_);
}
/**
* @brief Sets the tensor inference function to produce the same output as
* the input.
*/
OpSchema& IdenticalTypeAndShape();
OpSchema& IdenticalTypeAndShapeOfInput(int idx);
OpSchema& IdenticalTypeAndShapeOfInputDim(int idx, int dim);
OpSchema& IdenticalTypeAndShapeOfMultipleInputs(const vector<int>& indices);
OpSchema& ScalarType(::caffe2::TensorProto_DataType dt);
/**
* @brief A function to allow one to infer the type and shape from the op
* schema.
*/
inline vector<TensorShape> InferTensor(
const OperatorDef& def,
const vector<TensorShape>& input_type_shape) const {
CAFFE_ENFORCE(
Verify(def),
"(InferTensor) Operator def did not pass schema checking: ",
ProtoDebugString(def));
return tensor_inference_function_(def, input_type_shape);
}
/*
* @brief A struct to store various cost information about
* an operator such as FLOPs, total memory use and parameters.
*/
struct Cost {
uint64_t flops{0}; // Floating point operations.
uint64_t bytes_read{0}; // Total memory read.
uint64_t bytes_written{0}; // Total memory written.
uint64_t params_bytes{0}; // Memory read for parameters.
};
/**
* @brief Registers a function that takes in an OperatorDef
* and a series of input shapes and returns the total "cost"
* required to run the operator via struct by value.
*/
typedef std::function<
struct Cost(const OperatorDef&, const vector<TensorShape>&)>
CostInferenceFunctionType;
/**
* @brief Register the Cost inference function.
*/
OpSchema& CostInferenceFunction(CostInferenceFunctionType function);
#if 0 // def _MSC_VER
/**
* @brief Register the Cost inference function via a pointer.
*/
template <typename T,
typename = std::enable_if<
std::is_same<CostInferenceFunctionType&&, T>:value
>:type>
inline OpSchema& CostInferenceFunction(T func) {
// Note: This is here in order to resolve an MSVC compiler issue: it
// does not automatically convert a function pointer to a std::function,
// and needs an explicit conversion.
return CostInferenceFunction(CostInferenceFunctionType(func));
}
#endif // _MSC_VER
bool HasCostInferenceFunction() const {
return !!cost_inference_function_;
}
inline struct Cost InferCost(
const OperatorDef& def,
const vector<TensorShape>& input_tensor_shape) const {
CAFFE_ENFORCE(
cost_inference_function_, "Cost inference function not defined.");
return (*cost_inference_function_)(def, input_tensor_shape);
}
// Functions to do documentation for the operator schema.
OpSchema& SetDoc(const string& doc);
struct Argument {
Argument(const char* name, const char* description, bool required)
: name_{name}, description_{description}, required_{required} {}
const char* name() const {
return name_;
}
const char* description() const {
return description_;
}
bool is_required() const {
return required_;
}
private:
const char* name_;
const char* description_;
const bool required_;
};
OpSchema&
Arg(const char* name, const char* description, bool required = false);
#define DECLARE_STANDARD_ARG(name, str) \
static const char* Arg_##name; \
OpSchema& Arg##name(const char* description);
DECLARE_STANDARD_ARG(IsTest, is_test)
#undef DECLARE_STANDARD_ARG
OpSchema& Input(const int n, const char* name, const char* description);
OpSchema& Output(const int n, const char* name, const char* description);
// Calls the passed function with `this` as an argument. Useful for
// adding docs for templated/macro ops.
OpSchema& FillUsing(std::function<void(OpSchema&)> populator);
// Remove from documentation
OpSchema& Private();
// This op can pass data across devices
OpSchema& InputsCanCrossDevices();
/**
* @brief A function to allow one to get the number of outputs based on the
* number of inputs, if this schema supports it.
*/
int CalculateOutput(int num_input) const;
const std::string& onnx_schema() const {
return onnx_schema_;
}
int min_input() const {
return min_input_;
}
int max_input() const {
return max_input_;
}
int min_output() const {
return min_output_;
}
int max_output() const {
return max_output_;
}
bool num_inputs_allowed(int x) const {
return num_inputs_allowed_(x);
}
bool num_outputs_allowed(int x) const {
return num_outputs_allowed_(x);
}
bool num_inputs_outputs_allowed(int x, int y) const {
return num_inputs_outputs_allowed_(x, y);
}
int inf() const {
return std::numeric_limits<int>::max();
}
bool inplace_enforced(int x, int y) const {
return inplace_enforced_(x, y);
}
TORCH_API friend std::ostream& operator<<(
std::ostream& out,
const OpSchema& schema);
const std::vector<Argument>& args() const {
return args_;
}
const std::vector<std::pair<const char*, const char*>>& input_desc() const {
return input_desc_;
}
const std::vector<std::pair<const char*, const char*>>& output_desc() const {
return output_desc_;
}
bool private_op() {
return private_;
}
bool inputs_can_cross_devices() const {
return inputs_can_cross_devices_;
}
/**
* @brief Returns the required device location of inputs and outputs.
*/
using DeviceInferenceFunctionType = std::function<
std::pair<std::vector<DeviceOption>, std::vector<DeviceOption>>(
const OperatorDef& def)>;
OpSchema& DeviceInferenceFunction(DeviceInferenceFunctionType function);
/**
* @brief Infer required device location of an op's inputs and outputs
*/
inline std::pair<std::vector<DeviceOption>, std::vector<DeviceOption>>
InferDevice(const OperatorDef& def) const {
return device_inference_function_(def);
}
// The helper is build sparse input with values, keys, weights and lengths;
// e.g.:
// values = [1, 2, 3, 2, 4, 6, 7, 3, 6]
// keys = [0, 1, 4, 0, 1, 2, 5, 1, 2]
// weights = [1, 2, 3, 4, 5, 6, 7, 8, 9]
// \_____/ \________/ \__/
// lengths = [3, 4, 2]
OpSchema& WeightedValueKeyLengthInputFillers(
size_t value_index,
size_t key_index,
size_t length_index,
size_t weight_index);
// The helper is build sparse input with values, keys, weights and lengths;
// e.g.:
// values = [1, 2, 3, 2, 4, 6, 7, 3, 6]
// keys = [0, 1, 4, 0, 1, 2, 5, 1, 2]
// \_____/ \________/ \__/
// lengths = [3, 4, 2]
OpSchema& ValueKeyLengthInputFillers(
size_t value_index,
size_t key_index,
size_t length_index);
// The helper is build sparse input with values and lengths; e.g.:
// values = [1, 2, 3, 2, 4, 6, 7, 3, 6]
// \_____/ \________/ \__/
// lengths = [3, 4, 2]
OpSchema& ValueLengthInputFillers(size_t value_index, size_t length_index);
OpSchema& DisallowInputFillers();
std::vector<TensorFiller> InputFillers(
const std::vector<std::vector<int64_t>>& shapes) const;
private:
std::vector<TensorFiller> SupplyDenseFillers(
const std::vector<std::vector<int64_t>>& shapes);
private:
string type_;
string file_;
string doc_;
string onnx_schema_;
std::vector<Argument> args_{};
std::vector<std::pair<const char*, const char*>> input_desc_{};
std::vector<std::pair<const char*, const char*>> output_desc_{};
int line_ = 0;
int min_input_ = 0;
int max_input_ = std::numeric_limits<int>::max();
int min_output_ = 0;
int max_output_ = std::numeric_limits<int>::max();
bool private_ = false;
bool inputs_can_cross_devices_ = false;
std::function<bool(int)> num_inputs_allowed_ = [](int) { return true; };
std::function<bool(int)> num_outputs_allowed_ = [](int) { return true; };
std::function<bool(int, int)> num_inputs_outputs_allowed_ = [](int, int) {
return true;
};
std::function<int(int)> calculate_output_;
// In default, any in-place operation is neither allowed nor enforced.
std::function<bool(int, int)> inplace_allowed_ = [](int, int) {
return false;
};
std::function<bool(int, int)> inplace_enforced_ = [](int, int) {
return false;
};
TensorInferenceFunctionType tensor_inference_function_;
std::unique_ptr<CostInferenceFunctionType> cost_inference_function_ = nullptr;
DeviceInferenceFunctionType device_inference_function_;
std::function<std::vector<TensorFiller>(
const std::vector<std::vector<int64_t>>&)>
filler_supplier_ =
[this](const std::vector<std::vector<int64_t>>& shapes) {
return SupplyDenseFillers(shapes);
};
};
/**
* @brief A registry to hold all the operator schemas.
*/
class TORCH_API OpSchemaRegistry {
public:
static OpSchema&
NewSchema(const string& key, const string& file, const int line);
static const OpSchema* Schema(const string& key) {
auto& m = map();
auto it = m.find(key);
if (it != m.end()) {
return &it->second;
} else {
return nullptr;
}
}
private:
// OpSchemaRegistry should not need to be instantiated.
OpSchemaRegistry() = delete;
/**
* @brief Returns the underlying string to OpSchema map.
*
* You should not manually manipulate the map object returned. Instead, use
* the macros defined such as OPERATOR_SCHEMA to register your operator
* schema.
*
* We wrap it inside a function to avoid the static initialization order
* fiasco.
*/
static CaffeMap<string, OpSchema>& map();
};
// Helper function for creating simple tensorproto with dimension and type
template <typename T_I = int>
inline TensorShape CreateTensorShape(
vector<T_I> dims,
::caffe2::TensorProto_DataType dt) {
TensorShape ts;
for (T_I d : dims) {
ts.add_dims(d);
}
ts.set_data_type(dt);
return ts;
}
// Helper function
inline vector<int64_t> GetDimsVector(const TensorShape& shape) {
vector<int64_t> dims;
for (auto d : shape.dims()) {
dims.push_back(d);
}
return dims;
}
// Helper function
inline uint64_t nElemFromDim(const TensorShape& X, int dim = 0) {
CAFFE_ENFORCE_GE(dim, 0, "Invalid maximum index specified");
uint64_t nElem = 1;
for (const auto i : c10::irange(dim, X.dims_size())) {
nElem *= X.dims(i);
}
return nElem;
}
// Helper function
inline uint64_t nElemBetweenDim(const TensorShape& X, int start, int stop) {
CAFFE_ENFORCE_GE(start, 0, "Invalid maximum index specified");
CAFFE_ENFORCE_LE(stop, X.dims_size(), "Invalid maximum index specified");
uint64_t nElem = 1;
for (const auto i : c10::irange(start, stop)) {
nElem *= X.dims(i);
}
return nElem;
}
// Helper function for infer op inputs and outputs device information.
inline std::pair<std::vector<DeviceOption>, std::vector<DeviceOption>>
InferOpInputOutputDevice(const OperatorDef& op) {
auto op_schema = OpSchemaRegistry::Schema(op.type());
if (op_schema) {
// op_schema found
return op_schema->InferDevice(op);
} else {
// No schema for op.type registered
auto temp_schema = OpSchema();
return temp_schema.InferDevice(op);
}
}
template <uint64_t OpsPerPoint>
OpSchema::Cost PointwiseCostInference(
const OperatorDef& /* unused */,
const vector<TensorShape>& inputs) {
struct OpSchema::Cost c;
const TensorShape X = inputs[0];
uint64_t nElemX = nElemFromDim(X);
uint64_t nElemRead = 0;
for (const auto i : c10::irange(inputs.size())) {
nElemRead += nElemFromDim(inputs[i]);
}
c.flops = nElemX * OpsPerPoint;
auto const& X_element_size_byte =
DataTypeToTypeMeta(X.data_type()).itemsize();
c.bytes_read = nElemRead * X_element_size_byte;
c.bytes_written = nElemX * X_element_size_byte;
return c;
}
} // namespace caffe2
#if defined(_MSC_VER)
#define EXPORT_IF_NOT_MSVC
#else
#define EXPORT_IF_NOT_MSVC C10_EXPORT
#endif
#ifndef CAFFE2_NO_OPERATOR_SCHEMA
#define OPERATOR_SCHEMA(name) \
EXPORT_IF_NOT_MSVC void CAFFE2_PLEASE_ADD_OPERATOR_SCHEMA_FOR_##name(){}; \
static OpSchema* C10_ANONYMOUS_VARIABLE(name) CAFFE2_UNUSED = \
&OpSchemaRegistry::NewSchema(#name, __FILE__, __LINE__)
#else // CAFFE2_NO_OPERATOR_SCHEMA
#define OPERATOR_SCHEMA(name) \
EXPORT_IF_NOT_MSVC void CAFFE2_PLEASE_ADD_OPERATOR_SCHEMA_FOR_##name(){}; \
static OpSchema* C10_ANONYMOUS_VARIABLE(name) CAFFE2_UNUSED = \
1 ? nullptr : &OpSchemaRegistry::NewSchema(#name, __FILE__, __LINE__)
#endif // CAFFE2_NO_OPERATOR_SCHEMA
#ifdef CAFFE2_NO_GRADIENT_OPS
#define GRADIENT_OPERATOR_SCHEMA(name) \
EXPORT_IF_NOT_MSVC void CAFFE2_PLEASE_ADD_OPERATOR_SCHEMA_FOR_##name(){}; \
static OpSchema* C10_ANONYMOUS_VARIABLE(name) CAFFE2_UNUSED = \
1 ? nullptr : &OpSchemaRegistry::NewSchema(#name, __FILE__, __LINE__)
#else
#define GRADIENT_OPERATOR_SCHEMA(name) OPERATOR_SCHEMA(name)
#endif
#endif // CAFFE2_CORE_OPERATOR_SCHEMA_H_
|