1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
|
#ifndef CAFFE2_UTILS_TEST_UTILS_H_
#define CAFFE2_UTILS_TEST_UTILS_H_
#include "caffe2/core/tensor.h"
#include "caffe2/core/workspace.h"
#include "caffe2/utils/proto_utils.h"
#include <c10/macros/Macros.h>
#include <c10/util/irange.h>
#include <cmath>
#include <string>
#include <vector>
// Utilities that make it easier to write caffe2 C++ unit tests.
// These utils are designed to be concise and easy to use. They may sacrifice
// performance and should only be used in tests/non production code.
namespace caffe2 {
namespace testing {
// Asserts that the values of two tensors are the same.
TORCH_API void assertTensorEquals(
const TensorCPU& tensor1,
const TensorCPU& tensor2,
float eps = 1e-6);
// Asserts that two float values are close within epsilon.
TORCH_API void assertNear(float value1, float value2, float epsilon);
// Asserts that the numeric values of a tensor is equal to a data vector.
template <typename T>
void assertTensorEquals(
const TensorCPU& tensor,
const std::vector<T>& data,
float epsilon = 0.1f) {
CAFFE_ENFORCE(tensor.IsType<T>());
CAFFE_ENFORCE_EQ(tensor.numel(), data.size());
for (const auto idx : c10::irange(tensor.numel())) {
if (tensor.IsType<float>()) {
assertNear(tensor.data<T>()[idx], data[idx], epsilon);
} else {
CAFFE_ENFORCE_EQ(tensor.data<T>()[idx], data[idx]);
}
}
}
// Assertion for tensor sizes and values.
template <typename T>
void assertTensor(
const TensorCPU& tensor,
const std::vector<int64_t>& sizes,
const std::vector<T>& data,
float epsilon = 0.1f) {
CAFFE_ENFORCE_EQ(tensor.sizes(), sizes);
assertTensorEquals(tensor, data, epsilon);
}
// Asserts a list of tensors presented in two workspaces are equal.
TORCH_API void assertTensorListEquals(
const std::vector<std::string>& tensorNames,
const Workspace& workspace1,
const Workspace& workspace2);
// Read a tensor from the workspace.
TORCH_API const caffe2::Tensor& getTensor(
const caffe2::Workspace& workspace,
const std::string& name);
// Create a new tensor in the workspace.
TORCH_API caffe2::Tensor* createTensor(
const std::string& name,
caffe2::Workspace* workspace);
// Create a new operator in the net.
TORCH_API caffe2::OperatorDef* createOperator(
const std::string& type,
const std::vector<std::string>& inputs,
const std::vector<std::string>& outputs,
caffe2::NetDef* net);
// Fill a buffer with randomly generated numbers given range [min, max)
// T can only be float, double or long double
template <typename RealType = float>
void randomFill(
RealType* data,
size_t size,
const double min = 0.0,
const double max = 1.0) {
std::mt19937 gen(42);
std::uniform_real_distribution<RealType> dis(
static_cast<RealType>(min), static_cast<RealType>(max));
for (const auto i : c10::irange(size)) {
data[i] = dis(gen);
}
}
// Fill data from a vector to a tensor.
template <typename T>
void fillTensor(
const std::vector<int64_t>& shape,
const std::vector<T>& data,
TensorCPU* tensor) {
tensor->Resize(shape);
CAFFE_ENFORCE_EQ(data.size(), tensor->numel());
auto ptr = tensor->mutable_data<T>();
for (int i = 0; i < tensor->numel(); ++i) {
ptr[i] = data[i];
}
}
// Create a tensor and fill data.
template <typename T>
caffe2::Tensor* createTensorAndFill(
const std::string& name,
const std::vector<int64_t>& shape,
const std::vector<T>& data,
Workspace* workspace) {
auto* tensor = createTensor(name, workspace);
fillTensor<T>(shape, data, tensor);
return tensor;
}
template <typename T>
caffe2::Tensor createTensorAndFill(
const std::vector<int64_t>& shape,
const std::vector<T>& data) {
Tensor tensor(caffe2::CPU);
fillTensor<T>(shape, data, &tensor);
return tensor;
}
// Fill a constant to a tensor.
template <typename T>
void constantFillTensor(
const vector<int64_t>& shape,
const T& data,
TensorCPU* tensor) {
tensor->Resize(shape);
auto ptr = tensor->mutable_data<T>();
for (int i = 0; i < tensor->numel(); ++i) {
ptr[i] = data;
}
}
// Create a tensor and fill a constant.
template <typename T>
caffe2::Tensor* createTensorAndConstantFill(
const std::string& name,
const std::vector<int64_t>& shape,
const T& data,
Workspace* workspace) {
auto* tensor = createTensor(name, workspace);
constantFillTensor<T>(shape, data, tensor);
return tensor;
}
// Concise util class to mutate a net in a chaining fashion.
class TORCH_API NetMutator {
public:
// NOLINTNEXTLINE(clang-analyzer-optin.cplusplus.UninitializedObject)
explicit NetMutator(caffe2::NetDef* net) : net_(net) {}
NetMutator& newOp(
const std::string& type,
const std::vector<std::string>& inputs,
const std::vector<std::string>& outputs);
NetMutator& externalInputs(const std::vector<std::string>& externalInputs);
NetMutator& externalOutputs(const std::vector<std::string>& externalOutputs);
// Add argument to the last created op.
template <typename T>
NetMutator& addArgument(const std::string& name, const T& value) {
CAFFE_ENFORCE(lastCreatedOp_ != nullptr);
AddArgument(name, value, lastCreatedOp_);
return *this;
}
// Set device name for the last created op.
NetMutator& setDeviceOptionName(const std::string& name);
private:
caffe2::NetDef* net_;
caffe2::OperatorDef* lastCreatedOp_;
};
// Concise util class to mutate a workspace in a chaining fashion.
class TORCH_API WorkspaceMutator {
public:
explicit WorkspaceMutator(caffe2::Workspace* workspace)
: workspace_(workspace) {}
// New tensor filled by a data vector.
template <typename T>
WorkspaceMutator& newTensor(
const std::string& name,
const std::vector<int64_t>& shape,
const std::vector<T>& data) {
createTensorAndFill<T>(name, shape, data, workspace_);
return *this;
}
// New tensor filled by a constant.
template <typename T>
WorkspaceMutator& newTensorConst(
const std::string& name,
const std::vector<int64_t>& shape,
const T& data) {
createTensorAndConstantFill<T>(name, shape, data, workspace_);
return *this;
}
private:
caffe2::Workspace* workspace_;
};
} // namespace testing
} // namespace caffe2
#endif // CAFFE2_UTILS_TEST_UTILS_H_
|