File: transform.cc

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (260 lines) | stat: -rw-r--r-- 8,523 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
#include "caffe2/core/transform.h"

#include "caffe2/core/common.h"
#include "caffe2/core/logging.h"
#include "caffe2/core/net.h"
#include "caffe2/core/timer.h"
#include "caffe2/proto/caffe2_pb.h"

namespace caffe2 {

using transform::Graph;

C10_DEFINE_REGISTRY(TransformRegistry, Transform);

std::vector<std::vector<int>> Transform::PatternMatch(const Graph& graph) {
  // checks if the node at index i is matched already or not
  std::vector<bool> matched(graph.size(), false);

  // stores matches, which are ordered subgraphs of G
  std::vector<std::vector<int>> matches;

  // Consider every possible node as the starting point.
  for (int idx = 0; idx < (int)graph.size(); ++idx) {
    // The current working subgraph. We will try to add new nodes to this,
    // when invoking the PatternRule.
    std::vector<int> subgraph;

    // The largest "validated" subgraph found so far.
    // This will be mutated by PatternMatchHelper.
    std::vector<int> best_subgraph;

    // Only begin to match if the start node is accepted.
    if (!matched.at(idx) && PatternRule(graph, subgraph, idx)) {
      subgraph.push_back(idx);
      PatternMatchHelper(graph, matched, &subgraph, &best_subgraph);
      subgraph.pop_back();
    }
    if (best_subgraph.size() > 0) { // match found
      matches.push_back(best_subgraph);
      for (const auto& x : best_subgraph) {
        matched[x] = true;
      }
    }
  }
  return matches;
}

void Transform::TryNeighbors(
    const Graph& graph,
    const std::map<int, std::vector<string>>& neighbors,
    const std::vector<bool>& matched,
    std::vector<int>* subgraph_ptr,
    std::vector<int>* best_subgraph_ptr) {
  auto& subgraph = *subgraph_ptr;
  for (const auto& edge : neighbors) {
    int j = edge.first;
    if (std::find(subgraph.begin(), subgraph.end(), j) == subgraph.end()) {
      if (!matched.at(j) && PatternRule(graph, subgraph, j)) {
        subgraph.push_back(j);
        PatternMatchHelper(graph, matched, subgraph_ptr, best_subgraph_ptr);
        subgraph.pop_back();
      }
    }
  }
}

void Transform::PatternMatchHelper(
    const Graph& graph,
    const std::vector<bool>& matched,
    std::vector<int>* subgraph_ptr,
    std::vector<int>* best_subgraph_ptr) {
  CHECK(subgraph_ptr);
  auto& subgraph = *subgraph_ptr;
  CHECK(best_subgraph_ptr);
  auto& best_subgraph = *best_subgraph_ptr;

  // If the current subgraph is valid, and the largest we've seen so far,
  // make it the best_subgraph.
  if (ValidatorRule(graph, subgraph) &&
      subgraph.size() > best_subgraph.size()) {
    best_subgraph = subgraph;
  }

  size_t size_before = subgraph.size();

  if (pattern_match_type_ == CONNECTED_SUBGRAPH) {
    // Connected Component Order Pattern Matching
    // We want to match subgraphs which are connected ConnectedComponents

    // Try adding each parent and child of every node in the subgraph,
    // and see if we can accept it.
    for (size_t i = 0; i < subgraph.size(); i++) {
      int x = subgraph[i];
      TryNeighbors(
          graph,
          graph.node(x).children,
          matched,
          subgraph_ptr,
          best_subgraph_ptr);
      CAFFE_ENFORCE(
          size_before == subgraph.size(),
          "Subgraph size should not change after returning from recursive call.");
      TryNeighbors(
          graph,
          graph.node(x).parents,
          matched,
          subgraph_ptr,
          best_subgraph_ptr);
      CAFFE_ENFORCE(
          size_before == subgraph.size(),
          "Subgraph size should not change after returning from recursive call.");
    }
  } else if (pattern_match_type_ == SORTED_WRT_EXECUTION_ORDER) {
    // Sorted Execution Order Pattern matching
    // We want to be able to match subgraphs in sorted execution order

    // We can safely assume our subgraph is already sorted.
    // This means, we only need to consider nodes that come after the LAST
    // node in our current subgraph.
    // Thus, we simply iterate over the nodes that come AFTER the last node of
    // our current subgraph.
    size_t start_idx = 0;
    if (subgraph.size() > 0) {
      start_idx = subgraph.back() + 1;
    }
    for (size_t i = start_idx; i < graph.size(); i++) {
      if (!matched.at(i) && PatternRule(graph, subgraph, i)) {
        subgraph.push_back(i);
        PatternMatchHelper(graph, matched, subgraph_ptr, best_subgraph_ptr);
        subgraph.pop_back();
      }
    }
  } else if (pattern_match_type_ == GENERAL) {
    // General Pattern matching
    // We want to be able to match any ordered subgraph

    // For every current subgraph, we consider all nodes to be
    // the next candidate node, as long as it isn't already matched.
    for (size_t i = 0; i < graph.size(); i++) {
      if (std::find(subgraph.begin(), subgraph.end(), i) == subgraph.end()) {
        // Then we try appending it to the subgraph.
        if (!matched.at(i) && PatternRule(graph, subgraph, i)) {
          subgraph.push_back(i);
          PatternMatchHelper(graph, matched, subgraph_ptr, best_subgraph_ptr);
          subgraph.pop_back();
        }
      }
    }
  } else {
    CAFFE_NOT_IMPLEMENTED;
  }
}

void Transform::ReplacePattern(
    const std::vector<vector<int>>& matches,
    Graph* graph) {
  for (const auto& match : matches) {
    // Make sure each matched node is still active (not overwritten)
    bool is_match_active = true;
    for (int idx : match) {
      if (!graph->is_node_active(idx)) {
        is_match_active = false;
      }
    }

    // Simply try to apply the replace rule upon every match.
    if (is_match_active && !ReplaceRule(match, graph)) {
      CAFFE_THROW("Replace failed!");
    }
  }
}

// The simple interface - performs the transformation upon a NetDef, and returns
// the result.
NetDef Transform::ApplyTo(const NetDef& orig_net) {
  Graph g(orig_net);
  const auto matches = PatternMatch(g);
  ReplacePattern(matches, &g);
  return g.GetNetDef();
}

// Create a Transform object
unique_ptr<Transform> CreateTransform(string key) {
  auto t = TransformRegistry()->Create(key);
  CAFFE_ENFORCE(t != nullptr, "Transform not found in registry: ", key);
  return t;
}

// Create a Transform object from registry,
// and immediately apply it to a Netdef.
NetDef ApplyTransform(const string& key, const NetDef& netdef) {
  auto t = CreateTransform(key);
  return t->ApplyTo(netdef);
}

double average_net_run_duration(
    const NetDef& netdef,
    const NetDef& init_netdef,
    const int warmup_runs,
    const int main_runs) {
  Workspace ws;
  if (init_netdef.op_size() > 0) {
    std::unique_ptr<NetBase> init_net(CreateNet(init_netdef, &ws));
    CHECK(init_net);
    CAFFE_ENFORCE(init_net->Run(), "Init run has failed!");
  } else {
    // If a proper init_net is not provided, then this is the best we can do.
    // NOLINTNEXTLINE(performance-for-range-copy)
    for (auto inp : netdef.external_input()) {
      ws.CreateBlob(inp);
    }
  }
  std::unique_ptr<NetBase> net(CreateNet(netdef, &ws));
  CHECK(net);
  CAFFE_ENFORCE(
      warmup_runs >= 0,
      "Number of warm up runs should be non negative, provided ",
      warmup_runs,
      ".");

  for (int i = 0; i < warmup_runs; i++) {
    CAFFE_ENFORCE(net->Run(), "Warmup run ", i, " has failed.");
  }

  CAFFE_ENFORCE(
      main_runs > 0,
      "Number of main runs should be positive, provided ",
      main_runs,
      ".");
  Timer timer;
  for (int i = 0; i < main_runs; i++) {
    CAFFE_ENFORCE(net->Run(), "Main run ", i, " has failed.");
  }
  return timer.MilliSeconds();
}

// Create a Transform object from registry, apply it to a NetDef.
// Will only return the transformed net if it is faster than the old net.
// This will run the init net first, will run the two nets warmup_runs times.
// Then, we will take the average time of main_runs runs, and only keep the
// transformed net if it is faster by a factor of improvement_threshold.
NetDef ApplyTransformIfFaster(
    const string& key,
    const NetDef& netdef,
    const NetDef& init_netdef,
    const int warmup_runs,
    const int main_runs,
    const double improvement_threshold) {
  NetDef transformed_netdef = ApplyTransform(key, netdef);
  double original_net_time =
      average_net_run_duration(netdef, init_netdef, warmup_runs, main_runs);
  double new_net_time = average_net_run_duration(
      transformed_netdef, init_netdef, warmup_runs, main_runs);
  if (original_net_time > improvement_threshold * new_net_time) {
    return transformed_netdef;
  }
  return netdef;
}

} // namespace Caffe2