File: workspace.cc

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (342 lines) | stat: -rw-r--r-- 10,601 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
#include "caffe2/core/workspace.h"

#include <algorithm>
#include <ctime>
#include <mutex>

#include "caffe2/core/logging.h"
#include "caffe2/core/net.h"
#include "caffe2/core/operator.h"
#include "caffe2/core/plan_executor.h"
#include "caffe2/core/tensor.h"
#include "caffe2/proto/caffe2_pb.h"

C10_DEFINE_bool(
    caffe2_print_blob_sizes_at_exit,
    false,
    "If true, workspace destructor will print all blob shapes");

namespace caffe2 {

void Workspace::PrintBlobSizes() {
  vector<string> blobs = LocalBlobs();
  size_t cumtotal = 0;

  // First get total sizes and sort
  vector<std::pair<size_t, std::string>> blob_sizes;
  for (const auto& s : blobs) {
    Blob* b = this->GetBlob(s);
    TensorInfoCall shape_fun = GetTensorInfoFunction(b->meta().id());
    if (shape_fun) {
      // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
      size_t capacity;
      DeviceOption _device;
      auto shape = shape_fun(b->GetRaw(), &capacity, &_device);
      // NB: currently it overcounts capacity of shared storages
      // TODO: fix it after the storage sharing is merged
      cumtotal += capacity;
      // NOLINTNEXTLINE(modernize-use-emplace)
      blob_sizes.push_back(make_pair(capacity, s));
    }
  }
  std::sort(
      blob_sizes.begin(),
      blob_sizes.end(),
      [](const std::pair<size_t, std::string>& a,
         const std::pair<size_t, std::string>& b) {
        return b.first < a.first;
      });

  // Then print in descending order
  LOG(INFO) << "---- Workspace blobs: ---- ";
  LOG(INFO) << "name;current shape;capacity bytes;percentage";
  for (const auto& sb : blob_sizes) {
    Blob* b = this->GetBlob(sb.second);
    TensorInfoCall shape_fun = GetTensorInfoFunction(b->meta().id());
    CHECK(shape_fun != nullptr);
    // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
    size_t capacity;
    DeviceOption _device;

    auto shape = shape_fun(b->GetRaw(), &capacity, &_device);
    std::stringstream ss;
    ss << sb.second << ";";
    for (const auto d : shape) {
      ss << d << ",";
    }
    LOG(INFO) << ss.str() << ";" << sb.first << ";" << std::setprecision(3)
              << (cumtotal > 0 ? 100.0 * double(sb.first) / cumtotal : 0.0)
              << "%";
  }
  LOG(INFO) << "Total;;" << cumtotal << ";100%";
}

vector<string> Workspace::LocalBlobs() const {
  vector<string> names;
  names.reserve(blob_map_.size());
  for (auto& entry : blob_map_) {
    names.push_back(entry.first);
  }
  return names;
}

vector<string> Workspace::Blobs() const {
  vector<string> names;
  names.reserve(blob_map_.size());
  for (auto& entry : blob_map_) {
    names.push_back(entry.first);
  }
  for (const auto& forwarded : forwarded_blobs_) {
    const auto* parent_ws = forwarded.second.first;
    const auto& parent_name = forwarded.second.second;
    if (parent_ws->HasBlob(parent_name)) {
      names.push_back(forwarded.first);
    }
  }
  if (shared_) {
    const auto& shared_blobs = shared_->Blobs();
    names.insert(names.end(), shared_blobs.begin(), shared_blobs.end());
  }
  return names;
}

Blob* Workspace::CreateBlob(const string& name) {
  if (HasBlob(name)) {
    VLOG(1) << "Blob " << name << " already exists. Skipping.";
  } else if (forwarded_blobs_.count(name)) {
    // possible if parent workspace deletes forwarded blob
    VLOG(1) << "Blob " << name << " is already forwarded from parent workspace "
            << "(blob " << forwarded_blobs_[name].second << "). Skipping.";
  } else {
    VLOG(1) << "Creating blob " << name;
    // NOLINTNEXTLINE(modernize-make-unique)
    blob_map_[name] = unique_ptr<Blob>(new Blob());
  }
  return GetBlob(name);
}

Blob* Workspace::CreateLocalBlob(const string& name) {
  auto p = blob_map_.emplace(name, nullptr);
  if (!p.second) {
    VLOG(1) << "Blob " << name << " already exists. Skipping.";
  } else {
    VLOG(1) << "Creating blob " << name;
    p.first->second = std::make_unique<Blob>();
  }
  return p.first->second.get();
}

Blob* Workspace::RenameBlob(const string& old_name, const string& new_name) {
  // We allow renaming only local blobs for API clarity purpose
  auto it = blob_map_.find(old_name);
  CAFFE_ENFORCE(
      it != blob_map_.end(),
      "Blob ",
      old_name,
      " is not in the local blob list");

  // New blob can't be in any parent either, otherwise it will hide a parent
  // blob
  CAFFE_ENFORCE(
      !HasBlob(new_name), "Blob ", new_name, "is already in the workspace");

  // First delete the old record
  auto value = std::move(it->second);
  blob_map_.erase(it);

  auto* raw_ptr = value.get();
  blob_map_[new_name] = std::move(value);
  return raw_ptr;
}

bool Workspace::RemoveBlob(const string& name) {
  auto it = blob_map_.find(name);
  if (it != blob_map_.end()) {
    VLOG(1) << "Removing blob " << name << " from this workspace.";
    blob_map_.erase(it);
    return true;
  }

  // won't go into shared_ here
  VLOG(1) << "Blob " << name << " not exists. Skipping.";
  return false;
}

const Blob* Workspace::GetBlob(const string& name) const {
  {
    auto it = blob_map_.find(name);
    if (it != blob_map_.end()) {
      return it->second.get();
    }
  }

  {
    auto it = forwarded_blobs_.find(name);
    if (it != forwarded_blobs_.end()) {
      const auto* parent_ws = it->second.first;
      const auto& parent_name = it->second.second;
      return parent_ws->GetBlob(parent_name);
    }
  }

  if (shared_) {
    if (auto blob = shared_->GetBlob(name)) {
      return blob;
    }
  }

  LOG(WARNING) << "Blob " << name << " not in the workspace.";
  // TODO(Yangqing): do we want to always print out the list of blobs here?
  // LOG(WARNING) << "Current blobs:";
  // for (const auto& entry : blob_map_) {
  //   LOG(WARNING) << entry.first;
  // }
  return nullptr;
}

void Workspace::AddBlobMapping(
    const Workspace* parent,
    const std::unordered_map<string, string>& forwarded_blobs,
    bool skip_defined_blobs) {
  CAFFE_ENFORCE(parent, "Parent workspace must be specified");
  for (const auto& forwarded : forwarded_blobs) {
    CAFFE_ENFORCE(
        parent->HasBlob(forwarded.second),
        "Invalid parent workspace blob " + forwarded.second);
    if (forwarded_blobs_.count(forwarded.first)) {
      const auto& ws_blob = forwarded_blobs_[forwarded.first];
      CAFFE_ENFORCE_EQ(
          ws_blob.first, parent, "Redefinition of blob " + forwarded.first);
      CAFFE_ENFORCE_EQ(
          ws_blob.second,
          forwarded.second,
          "Redefinition of blob " + forwarded.first);
    } else {
      if (skip_defined_blobs && HasBlob(forwarded.first)) {
        continue;
      }
      CAFFE_ENFORCE(
          !HasBlob(forwarded.first), "Redefinition of blob " + forwarded.first);
      // Lazy blob resolution - store the parent workspace and
      // blob name, blob value might change in the parent workspace
      forwarded_blobs_[forwarded.first] =
          std::make_pair(parent, forwarded.second);
    }
  }
}

Blob* Workspace::GetBlob(const string& name) {
  // NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
  return const_cast<Blob*>(static_cast<const Workspace*>(this)->GetBlob(name));
}

NetBase* Workspace::CreateNet(const NetDef& net_def, bool overwrite) {
  std::shared_ptr<NetDef> tmp_net_def(new NetDef(net_def));
  return CreateNet(tmp_net_def, overwrite);
}

NetBase* Workspace::CreateNet(
    const std::shared_ptr<const NetDef>& net_def,
    bool overwrite) {
  CAFFE_ENFORCE(net_def->has_name(), "Net definition should have a name.");
  if (net_map_.count(net_def->name()) > 0) {
    if (!overwrite) {
      CAFFE_THROW(
          "I respectfully refuse to overwrite an existing net of the same "
          "name \"",
          net_def->name(),
          "\", unless you explicitly specify overwrite=true.");
    }
    VLOG(1) << "Deleting existing network of the same name.";
    // Note(Yangqing): Why do we explicitly erase it here? Some components of
    // the old network, such as an opened LevelDB, may prevent us from creating
    // a new network before the old one is deleted. Thus we will need to first
    // erase the old one before the new one can be constructed.
    net_map_.erase(net_def->name());
  }
  // Create a new net with its name.
  VLOG(1) << "Initializing network " << net_def->name();
  net_map_[net_def->name()] =
      unique_ptr<NetBase>(caffe2::CreateNet(net_def, this));
  if (net_map_[net_def->name()].get() == nullptr) {
    LOG(ERROR) << "Error when creating the network."
               << "Maybe net type: [" << net_def->type() << "] does not exist";
    net_map_.erase(net_def->name());
    return nullptr;
  }
  return net_map_[net_def->name()].get();
}

NetBase* Workspace::GetNet(const string& name) {
  auto it = net_map_.find(name);
  if (it != net_map_.end()) {
    return it->second.get();
  }

  return nullptr;
}

void Workspace::DeleteNet(const string& name) {
  net_map_.erase(name);
}

bool Workspace::RunNet(const string& name) {
  auto it = net_map_.find(name);
  if (it == net_map_.end()) {
    LOG(ERROR) << "Network " << name << " does not exist yet.";
    return false;
  }
  return it->second->Run();
}

bool Workspace::RunOperatorOnce(const OperatorDef& op_def) {
  std::unique_ptr<OperatorBase> op(CreateOperator(op_def, this));
  if (op.get() == nullptr) {
    LOG(ERROR) << "Cannot create operator of type " << op_def.type();
    return false;
  }
  if (!op->Run()) {
    LOG(ERROR) << "Error when running operator " << op_def.type();
    return false;
  }
  // workaround for async cpu ops
  if (op->HasAsyncPart() && op->device_option().device_type() == PROTO_CPU) {
    op->Finish();
    return op->event().Query() == EventStatus::EVENT_SUCCESS;
  } else {
    return true;
  }
}

bool Workspace::RunNetOnce(const NetDef& net_def) {
  std::unique_ptr<NetBase> net(caffe2::CreateNet(net_def, this));
  if (net == nullptr) {
    CAFFE_THROW(
        "Could not create net: " + net_def.name() + " of type " +
        net_def.type());
  }
  if (!net->Run()) {
    LOG(ERROR) << "Error when running network " << net_def.name();
    return false;
  }
  return true;
}

bool Workspace::RunPlan(const PlanDef& plan, ShouldContinue shouldContinue) {
  return RunPlanOnWorkspace(this, plan, shouldContinue);
}

ThreadPool* Workspace::GetThreadPool() {
  std::lock_guard<std::mutex> guard(thread_pool_creation_mutex_);
  if (!thread_pool_) {
    thread_pool_ = ThreadPool::defaultThreadPool();
  }
  return thread_pool_.get();
}

std::shared_ptr<Workspace::Bookkeeper> Workspace::bookkeeper() {
  static auto shared = std::make_shared<Workspace::Bookkeeper>();
  return shared;
}

} // namespace caffe2