File: fully_connected_op_sparse.h

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (192 lines) | stat: -rw-r--r-- 4,601 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
/**
 * Copyright (c) 2016-present, Facebook, Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef CAFFE2_OPERATORS_FULLY_CONNECTED_OP_SPARSE_H_
#define CAFFE2_OPERATORS_FULLY_CONNECTED_OP_SPARSE_H_

#include "caffe2/core/context.h"
#include "caffe2/core/operator.h"
#include "caffe2/utils/math.h"
#ifdef CAFFE2_USE_MKL
#include <mkl.h>
#endif // CAFFE2_USE_MKL

namespace caffe2 {

namespace {

template <int N>
using Shape = std::array<int, N>;

template <int N>
const std::vector<int64_t>& shape(Shape<N> vs) {
  static thread_local std::vector<int64_t> cache;
  cache.resize(vs.size());
  for (const auto i : c10::irange(vs.size())) {
    cache[i] = vs[i];
  }
  return cache;
}

inline const std::vector<int64_t>& shape(int i) {
  return shape<1>(Shape<1>({i}));
}

inline const std::vector<int64_t>& shape(int i, int j) {
  return shape<2>(Shape<2>({i, j}));
}

template <typename T, class Context>
void Sparse_mm(
    const T* acsr,
    const int* ia,
    const int* ja,
    int m,
    int k,
    int n,
    const T* b,
    T* c,
    Context* context);

template <typename T, class Context>
void trans_mat(const T* o, T* t, int m, int n, Context* context);

template <>
void trans_mat<float, CPUContext>(
    const float* o,
    float* t,
    int m,
    int n,
    CPUContext* /*context*/) {
  for (const auto i : c10::irange(m)) {
    for (const auto j : c10::irange(n)) {
      t[j * m + i] = o[i * n + j];
    }
  }
}

// C = A(sparse) * B
// No transpose;
template <>
void Sparse_mm<float, CPUContext>(
    const float* acsr,
    const int* ia,
    const int* ja,
    int m,
    int k,
    int n,
    const float* b,
    float* c,
    CPUContext* /*context*/) {
#ifdef CAFFE2_USE_MKL

  float alpha = 1.0, beta = 0.;
  mkl_scsrmm(
      "N",
      &m,
      &n,
      &k,
      &alpha,
      "GLNC",
      acsr,
      ja,
      ia,
      ia + 1,
      b,
      &n,
      &beta,
      c,
      &n);

#else
  throw std::runtime_error("Not compiled with MKL");
#endif
}

} // namespace

// This is Caffe's InnerProductOp, with a name that fits its purpose better.
template <typename T, class Context, class Engine = DefaultEngine>
class FullyConnectedOp_SPARSE final : public Operator<Context> {
 public:
  USE_OPERATOR_CONTEXT_FUNCTIONS;
  FullyConnectedOp_SPARSE(const OperatorDef& operator_def, Workspace* ws)
      : Operator<Context>(operator_def, ws) {}
  ~FullyConnectedOp_SPARSE() {}

  bool RunOnDevice() override {
    const auto& Xt = Input(0); // transposed X
    const auto& Wcsr = Input(1);
    const auto& iw = Input(2);
    const auto& jw = Input(3);
    // Notice that we do not need to transpose b
    const auto& b = Input(4);
    // transposed Y
    // here we assume X is k-by-m
    CAFFE_ENFORCE_EQ(Xt.dim(), 2);
    CAFFE_ENFORCE_EQ(b.dim(), 1);
    // batch size
    int K = Xt.dim() > 1 ? Xt.dim32(0) : 1;
    // Feature dimension
    int M = Xt.numel() / K;
    // number of outputs.
    int N = iw.dim32(0) - 1;
    CAFFE_ENFORCE_EQ(N, b.dim32(0));
    auto* Yt = Output(0, shape(N, M), at::dtype<T>());

    // Y' = W * X';
    Sparse_mm<T, Context>(
        Wcsr.template data<T>(),
        iw.template data<int>(),
        jw.template data<int>(),
        N,
        K,
        M,
        Xt.template data<T>(),
        Yt->template mutable_data<T>(),
        &context_);
    // Add bias term
    if (bias_multiplier_.numel() != M) {
      // If the helper bias multiplier is not M, reshape and fill it with one.
      bias_multiplier_.Resize(shape(M));
      math::Set<T, Context>(
          M,
          static_cast<T>(1),
          bias_multiplier_.template mutable_data<T>(),
          &context_);
    }
    math::Gemm<T, Context, Engine>(
        CblasNoTrans,
        CblasNoTrans,
        N,
        M,
        1,
        1,
        b.template data<T>(),
        bias_multiplier_.template data<T>(),
        1,
        Yt->template mutable_data<T>(),
        &context_);
    return true;
  }

 protected:
  Tensor bias_multiplier_{Context::GetDeviceType()};
};

} // namespace caffe2

#endif // CAFFE2_OPERATORS_FULLY_CONNECTED_OP_H_