1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
|
# Copyright (c) 2016-present, Facebook, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
##############################################################################
## @package net_construct_bench
# Module caffe2.experiments.python.net_construct_bench
import argparse
import logging
import time
from caffe2.python import workspace, data_parallel_model
from caffe2.python import cnn
import caffe2.python.models.resnet as resnet
'''
Simple benchmark that creates a data-parallel resnet-50 model
and measures the time.
'''
logging.basicConfig()
log = logging.getLogger("net_construct_bench")
log.setLevel(logging.DEBUG)
def AddMomentumParameterUpdate(train_model, LR):
'''
Add the momentum-SGD update.
'''
params = train_model.GetParams()
assert(len(params) > 0)
ONE = train_model.param_init_net.ConstantFill(
[], "ONE", shape=[1], value=1.0,
)
NEGONE = train_model.param_init_net.ConstantFill(
[], 'NEGONE', shape=[1], value=-1.0,
)
for param in params:
param_grad = train_model.param_to_grad[param]
param_momentum = train_model.param_init_net.ConstantFill(
[param], param + '_momentum', value=0.0
)
# Update param_grad and param_momentum in place
train_model.net.MomentumSGD(
[param_grad, param_momentum, LR],
[param_grad, param_momentum],
momentum=0.9,
nesterov=1
)
# Update parameters by applying the moment-adjusted gradient
train_model.WeightedSum(
[param, ONE, param_grad, NEGONE],
param
)
def Create(args):
gpus = list(range(args.num_gpus))
log.info("Running on gpus: {}".format(gpus))
# Create CNNModeLhelper object
train_model = cnn.CNNModelHelper(
order="NCHW",
name="resnet50",
use_cudnn=True,
cudnn_exhaustive_search=False
)
# Model building functions
def create_resnet50_model_ops(model, loss_scale):
[softmax, loss] = resnet.create_resnet50(
model,
"data",
num_input_channels=3,
num_labels=1000,
label="label",
)
model.Accuracy([softmax, "label"], "accuracy")
return [loss]
# SGD
def add_parameter_update_ops(model):
model.AddWeightDecay(1e-4)
ITER = model.Iter("ITER")
stepsz = int(30)
LR = model.net.LearningRate(
[ITER],
"LR",
base_lr=0.1,
policy="step",
stepsize=stepsz,
gamma=0.1,
)
AddMomentumParameterUpdate(model, LR)
def add_image_input(model):
pass
start_time = time.time()
# Create parallelized model
data_parallel_model.Parallelize_GPU(
train_model,
input_builder_fun=add_image_input,
forward_pass_builder_fun=create_resnet50_model_ops,
param_update_builder_fun=add_parameter_update_ops,
devices=gpus,
)
ct = time.time() - start_time
train_model.net._CheckLookupTables()
log.info("Model create for {} gpus took: {} secs".format(len(gpus), ct))
def main():
# TODO: use argv
parser = argparse.ArgumentParser(
description="Caffe2: Benchmark for net construction"
)
parser.add_argument("--num_gpus", type=int, default=1,
help="Number of GPUs.")
args = parser.parse_args()
Create(args)
if __name__ == '__main__':
workspace.GlobalInit(['caffe2', '--caffe2_log_level=2'])
import cProfile
cProfile.run('main()', sort="cumulative")
|