1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
|
#include <caffe2/ideep/ideep_utils.h>
using namespace caffe2;
namespace {
void adam_ideep_compute(
int N,
const float* w,
const float* g,
const float* m,
const float* v,
float* nw,
float* nm,
float* nv,
float beta1,
float beta2,
float eps_hat,
float correction,
const float* lr) {
#ifdef _OPENMP
#pragma omp parallel for schedule(static)
#endif
for (auto i = 0; i < N; ++i) {
float gi = g[i];
float mi = nm[i] = m[i] * beta1 + gi * (1 - beta1);
float vi = nv[i] = v[i] * beta2 + gi * gi * (1 - beta2);
nw[i] = w[i] + lr[0] * correction * mi / (std::sqrt(vi) + eps_hat);
}
}
void adam_ideep_compute_output_grad(
int N,
const float* w,
const float* g,
const float* m,
const float* v,
float* nw,
float* nm,
float* nv,
float* ng,
float beta1,
float beta2,
float eps_hat,
float correction,
const float* lr) {
#ifdef _OPENMP
#pragma omp parallel for schedule(static)
#endif
for (auto i = 0; i < N; ++i) {
float gi = g[i];
float mi = nm[i] = m[i] * beta1 + gi * (1 - beta1);
float vi = nv[i] = v[i] * beta2 + gi * gi * (1 - beta2);
float ngi = ng[i] = correction * mi / (std::sqrt(vi) + eps_hat);
nw[i] = w[i] + lr[0] * ngi;
}
}
template <typename T>
class IDEEPAdamOp final : public IDEEPOperator {
public:
USE_IDEEP_DEF_ALIASES();
USE_IDEEP_OPERATOR_FUNCTIONS();
IDEEPAdamOp(const OperatorDef& operator_def, Workspace* ws)
: IDEEPOperator(operator_def, ws),
beta1_(OperatorBase::GetSingleArgument<float>("beta1", 0.9f)),
beta2_(OperatorBase::GetSingleArgument<float>("beta2", 0.999f)),
epsilon_(OperatorBase::GetSingleArgument<float>("epsilon", 1e-5f)) {}
bool RunOnDevice() override {
// Iter live on the CPU
CAFFE_ENFORCE(OperatorBase::InputIsTensorType(ITER, CPU));
const auto& params = Input(PARAM);
const auto& moment_1 = Input(MOMENT_1);
const auto& moment_2 = Input(MOMENT_2);
const auto& grad = Input(GRAD);
// TODO: Use itensor after 0-dim is supported. Now use CPU tensor.
const auto& lr = OperatorBase::Input<TensorCPU>(LR, CPU);
auto* out_params = Output(OUTPUT_PARAM);
auto* out_moment1 = Output(OUTPUT_MOMENT_1);
auto* out_moment2 = Output(OUTPUT_MOMENT_2);
CAFFE_ENFORCE(lr.size() == 1);
CAFFE_ENFORCE(grad.get_nelems() == params.get_nelems());
CAFFE_ENFORCE(grad.get_nelems() == moment_1.get_nelems());
CAFFE_ENFORCE(grad.get_nelems() == moment_2.get_nelems());
if (params != *out_params)
out_params->init(params.get_descriptor());
if (moment_1 != *out_moment1)
out_moment1->init(moment_1.get_descriptor());
if (moment_2 != *out_moment2)
out_moment2->init(moment_2.get_descriptor());
const auto w = static_cast<float *>(params.get_data_handle());
const auto g = static_cast<float *>(grad.get_data_handle());
const auto m = static_cast<float *>(moment_1.get_data_handle());
const auto v = static_cast<float *>(moment_2.get_data_handle());
auto nw = static_cast<float *>(out_params->get_data_handle());
auto nm = static_cast<float *>(out_moment1->get_data_handle());
auto nv = static_cast<float *>(out_moment2->get_data_handle());
const auto nlr = lr.template data<T>();
const auto iter =
OperatorBase::Input<TensorCPU>(ITER, CPU).template data<int64_t>()[0];
const auto t = iter + 1;
const auto correction =
std::sqrt(T(1.) - std::pow(beta2_, t)) / (T(1.) - std::pow(beta1_, t));
if (OutputSize() == 3) {
adam_ideep_compute(
grad.get_nelems(),
w,
g,
m,
v,
nw,
nm,
nv,
beta1_,
beta2_,
epsilon_,
correction,
nlr);
} else {
auto* out_grad = Output(OUTPUT_GRAD);
if (grad != *out_grad)
out_grad->init(grad.get_descriptor());
auto ng = static_cast<float *>(out_grad->get_data_handle());
adam_ideep_compute_output_grad(
grad.get_nelems(),
w,
g,
m,
v,
nw,
nm,
nv,
ng,
beta1_,
beta2_,
epsilon_,
correction,
nlr);
}
return true;
}
protected:
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes,cppcoreguidelines-avoid-magic-numbers)
T beta1_{0.9};
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes,cppcoreguidelines-avoid-magic-numbers)
T beta2_{0.999};
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes,cppcoreguidelines-avoid-magic-numbers)
T epsilon_{1e-8};
INPUT_TAGS(PARAM, MOMENT_1, MOMENT_2, GRAD, LR, ITER);
OUTPUT_TAGS(OUTPUT_PARAM, OUTPUT_MOMENT_1, OUTPUT_MOMENT_2, OUTPUT_GRAD);
};
REGISTER_IDEEP_OPERATOR(Adam, IDEEPAdamOp<float>);
} // namespace
|