1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
|
#include <caffe2/ideep/ideep_utils.h>
#include <caffe2/ideep/operators/operator_fallback_ideep.h>
#include <caffe2/operators/concat_split_op.h>
using namespace caffe2;
namespace {
class IDEEPConcatOp final : public IDEEPOperator {
public:
USE_IDEEP_DEF_ALIASES();
USE_IDEEP_OPERATOR_FUNCTIONS();
using FALLBACK_OP = IDEEPFallbackOp<ConcatOp<CPUContext>, SkipIndices<0>>;
IDEEPConcatOp(const OperatorDef& operator_def, Workspace* ws)
: IDEEPOperator(operator_def, ws),
fallback_(operator_def, ws) {
CAFFE_ENFORCE(
!(OperatorBase::HasArgument("axis") && OperatorBase::HasArgument("order")),
"You shouldn't specify both the dim to concat, and the order "
"in the case of 4-D images.");
if (OperatorBase::HasArgument("axis")) {
axis_ = OperatorBase::GetSingleArgument<int>("axis", -1);
add_axis_ = OperatorBase::GetSingleArgument<int>("add_axis", 0);
} else {
axis_ = 1;
add_axis_ = 0;
}
}
// NOLINTNEXTLINE(modernize-use-equals-default)
~IDEEPConcatOp() override {}
bool RunOnDevice() override {
bool fallback_to_cpu = false;
vector<itensor> inputs_itensor;
for (int i = 0; i < InputSize(); ++i) {
if (OperatorBase::InputBlob(i).template IsType<itensor>()) {
auto& tensor_ideep = Input(i);
if (tensor_ideep.ndims() == 0 || tensor_ideep.get_nelems() == 0)
continue;
inputs_itensor.emplace_back(tensor_ideep);
} else {
CAFFE_ENFORCE(
BlobIsTensorType(OperatorBase::InputBlob(i), CPU),
"Expect cpu tensor if not itensor");
auto& tensor_cpu = OperatorBase::Input<Tensor>(i, CPU);
if (tensor_cpu.sizes().size() == 0 || tensor_cpu.numel() == 0)
continue;
fallback_to_cpu = true;
break;
}
}
if (!fallback_to_cpu) {
int adj_size = inputs_itensor[0].ndims() + (add_axis_ ? 1 : 0);
int canonical_axis = canonical_axis_index_(axis_, adj_size);
auto* output = Output(OUTPUT);
Tensor* axis_info = OutputTensor(AXIS_INFO,
vector<int64_t>(1, InputSize()), at::dtype<int>().device(CPU));
auto* axis_data = axis_info->template mutable_data<int>();
auto axis_vdata =
ideep::concat::compute(inputs_itensor, canonical_axis, add_axis_, *output);
// NOLINTNEXTLINE(clang-diagnostic-sign-compare)
for (int i = 0; i < axis_vdata.size(); i++) {
axis_data[i] = axis_vdata[i];
}
return true;
}
return fallback_.Run(0);
}
private:
int axis_;
int add_axis_;
FALLBACK_OP fallback_;
INPUT_TAGS(INPUT0);
OUTPUT_TAGS(OUTPUT, AXIS_INFO);
};
class IDEEPSplitOp final : public IDEEPOperator {
public:
USE_IDEEP_DEF_ALIASES();
USE_IDEEP_OPERATOR_FUNCTIONS();
IDEEPSplitOp(const OperatorDef& operator_def, Workspace* ws)
: IDEEPOperator(operator_def, ws),
axis_offset_(OperatorBase::GetRepeatedArgument<int>("split")) {
CAFFE_ENFORCE(
!(OperatorBase::HasArgument("axis") && OperatorBase::HasArgument("order")),
"You shouldn't specify both the dim to split, and the order "
"in the case of 4-D images.");
if (OperatorBase::HasArgument("axis")) {
axis_ = OperatorBase::GetSingleArgument<int>("axis", -1);
// only exists for computing the gradient of a Concat with 'add_axis'
add_axis_ = OperatorBase::GetSingleArgument<int>("add_axis", 0);
} else {
axis_ = 1;
add_axis_ = 0;
}
}
// NOLINTNEXTLINE(modernize-use-equals-default)
~IDEEPSplitOp() override {}
bool RunOnDevice() override {
const auto& input = Input(INPUT);
int canonical_axis = canonical_axis_index_(axis_, input.ndims());
const int input_channels = input.get_dim(canonical_axis);
vector<int> axis_vdata(OutputSize(), 0);
if (InputSize() == 2) {
// We obtain split from the input tensor.
CAFFE_ENFORCE_EQ(
axis_offset_.size(),
0,
"If you set split with an input blob, do not pass in "
"split in the argument.");
auto& axis_info = OperatorBase::Input<Tensor>(AXIS_INFO, CPU);
CAFFE_ENFORCE_EQ(axis_info.numel(), OutputSize());
auto* axis_data = axis_info.template data<int>();
axis_vdata.assign(axis_data, axis_data + OutputSize());
} else if (axis_offset_.size() == 0) {
CAFFE_ENFORCE_EQ(
input_channels % OutputSize(),
0,
"If you did not specify split explicitly, the number of "
"input channels should be divisible by the output size.");
axis_vdata.assign(OutputSize(), input_channels / OutputSize());
} else {
// We obtain split from the parameters.
CAFFE_ENFORCE_EQ(
axis_offset_.size(),
OutputSize(),
"The number of splits specified should be equal to the "
"number of outputs.");
axis_vdata = axis_offset_;
}
CAFFE_ENFORCE_EQ(
add_axis_ ? OutputSize()
: std::accumulate(
axis_vdata.data(), axis_vdata.data() + OutputSize(), 0),
input_channels,
"Sum of split dimensions do not match: should be ",
input_channels);
auto iten_vector = ideep::spliter::compute(
input, axis_vdata, canonical_axis, add_axis_);
CAFFE_ENFORCE_EQ(
iten_vector.size(),
OutputSize(),
"Output size does not match: should be ",
OutputSize());
for (int i = 0; i < OutputSize(); i++) {
auto* output = Output(i);
*output = iten_vector[i];
}
return true;
}
private:
int axis_;
int add_axis_;
vector<int> axis_offset_;
INPUT_TAGS(INPUT, AXIS_INFO);
};
REGISTER_IDEEP_OPERATOR(Concat, IDEEPConcatOp);
REGISTER_IDEEP_OPERATOR(Split, IDEEPSplitOp);
} // namespace
|