1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
|
#include <caffe2/ideep/operators/conv_pool_base_op.h>
using namespace caffe2;
namespace {
class IDEEPConvOp : public IDEEPConvPoolOpBase {
public:
USE_IDEEP_DEF_ALIASES();
USE_IDEEP_CONV_POOL_BASE_FUNCTIONS();
IDEEPConvOp(const OperatorDef& operator_def, Workspace* ws)
: IDEEPConvPoolOpBase(operator_def, ws) {
OPERATOR_NEEDS_FEATURE(
order_ == StorageOrder::NCHW, "Unsupported storage order.");
OPERATOR_NEEDS_FEATURE(
pad_l() == pad_r() && pad_t() == pad_b(),
"Uneven padding not supported.");
fusion_type_ = FUSION_UNKNOWN;
last_input_ = BIAS_OR_INPUT_S;
training_mode_ = OperatorBase::GetSingleArgument<int>("training_mode", 0);
pk_ = training_mode_ ? iprop::forward_training : iprop::forward_inference;
algo_ = ialgo::convolution_direct;
auto conv_algorithm = OperatorBase::GetSingleArgument<int>(
"conv_algorithm", CONV_ALGORITHM_AUTO);
if (conv_algorithm == CONV_ALGORITHM_WINOGRAD) {
algo_ = ialgo::convolution_winograd;
}
}
// NOLINTNEXTLINE(modernize-use-override,modernize-use-equals-default)
virtual ~IDEEPConvOp() {}
bool RunOnDeviceWithOrderNCHW() override {
const auto& X = Input(INPUT_X);
const auto& filter = Input(FILTER);
auto* Y = Output(OUTPUT);
CAFFE_ENFORCE(4 == X.ndims());
CAFFE_ENFORCE(4 == filter.ndims());
CAFFE_ENFORCE_EQ(filter.get_dim(2), kernel_h());
CAFFE_ENFORCE_EQ(filter.get_dim(3), kernel_w());
CAFFE_ENFORCE(
X.get_dim(1) == filter.get_dim(1) * group_,
"Convolution op: input channels does not match: # of input channels ",
X.get_dim(1),
" is not equal to kernel channels * group:",
filter.get_dim(1),
"*",
group_);
bool input_changed = (cached_X_descriptor_ != X.get_descriptor());
if (input_changed) {
cached_X_descriptor_ = X.dup_descriptor();
}
bool weights_changed = (cached_weights_descriptor_ != filter.get_descriptor());
if (!training_mode_ && weights_changed) {
cached_weights_descriptor_ = filter.dup_descriptor();
auto expected_descriptor =
ideep::convolution_forward::expected_weights_desc(
filter.get_dims(),
idtype::f32,
{stride_.begin(), stride_.end()},
pad_tl(),
pad_br(),
{dilation_.begin(), dilation_.end()},
group_,
algo_,
pk_,
idtype::f32,
X.get_dims());
if (filter.get_descriptor() != expected_descriptor) {
filter_.init(expected_descriptor);
filter_.feed_from(filter);
} else {
filter_ = filter;
}
}
bool with_bias = InputSize() > last_input_;
auto filter_in = training_mode_ ? filter : filter_;
if (training_mode_ || input_changed || weights_changed) {
auto Y_dims_conv = CalcOutputDims(X, filter.get_dim(0));
if (with_bias) {
ideep::convolution_forward::prepare(
conv_param,
X,
filter_in,
Input(BIAS_OR_INPUT_S),
Y_dims_conv,
*Y,
{stride_.begin(), stride_.end()},
{dilation_.begin(), dilation_.end()},
pad_tl(),
pad_br(),
group_,
dummy_scale_,
dummy_scale_,
dummy_scale_,
attr_,
algo_,
pk_);
} else {
ideep::convolution_forward::prepare(
conv_param,
X,
filter_in,
Y_dims_conv,
*Y,
{stride_.begin(), stride_.end()},
{dilation_.begin(), dilation_.end()},
pad_tl(),
pad_br(),
group_,
dummy_scale_,
dummy_scale_,
dummy_scale_,
attr_,
algo_,
pk_);
}
}
if (with_bias) {
ideep::convolution_forward::compute(conv_param, X, filter_in,
Input(BIAS_OR_INPUT_S), *Y);
} else {
ideep::convolution_forward::compute(conv_param, X, filter_in, *Y);
}
if (fusion_type_ == FUSION_CONV_SUM
|| fusion_type_ == FUSION_CONV_SUM_RELU) {
CAFFE_ENFORCE_EQ(Y, &(Input(InputSize() - 1)),
"Convolution fusion op: InPlace is enforced for sum fusion.");
}
return true;
}
protected:
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
iprop pk_;
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
ialgo algo_;
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
iattr attr_;
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
int last_input_;
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
bool training_mode_;
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
FusionType fusion_type_;
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
itensor filter_;
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
iscale dummy_scale_;
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
itensor::descriptor cached_X_descriptor_, cached_weights_descriptor_;
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
ideep::convolution_forward_params conv_param;
INPUT_TAGS(INPUT_X, FILTER, BIAS_OR_INPUT_S, INPUT_S);
OUTPUT_TAGS(OUTPUT);
};
class IDEEPConvFusionOp final : public IDEEPConvOp {
public:
USE_IDEEP_DEF_ALIASES();
USE_IDEEP_CONV_POOL_BASE_FUNCTIONS();
IDEEPConvFusionOp(const OperatorDef& operator_def, Workspace* ws)
: IDEEPConvOp(operator_def, ws) {
CAFFE_ENFORCE(OperatorBase::HasArgument("fusion_type"),
"You should specify the fusion type");
fusion_type_ = static_cast<FusionType>(
OperatorBase::GetSingleArgument<int>("fusion_type", FUSION_UNKNOWN));
OPERATOR_NEEDS_FEATURE(
fusion_type_ > FUSION_UNKNOWN && fusion_type_ < FUSION_MAX,
"Undefined Conv fusion type.",
fusion_type_);
switch (fusion_type_) {
case FUSION_CONV_RELU:
attr_ = iattr::fuse_relu();
last_input_ = BIAS_OR_INPUT_S;
break;
case FUSION_CONV_SUM:
attr_ = iattr::fuse_sum();
last_input_ = INPUT_S;
break;
case FUSION_CONV_SUM_RELU:
attr_ = iattr::residual();
last_input_ = INPUT_S;
break;
default:
CAFFE_THROW("Unsupported conv fusion type!");
}
}
// NOLINTNEXTLINE(modernize-use-override,modernize-use-equals-default)
virtual ~IDEEPConvFusionOp() {}
};
const char* kConvFusionDoc = R"DOC(
Note that other parameters, such as the stride and
kernel size, or the pads' sizes in each direction are not necessary for input
because they are provided by the ConvPoolOpBase operator. Various dimension
checks are done implicitly, and the sizes are specified in the Input docs for
this operator. As is expected, the filter is convolved with a subset of the
image and the bias is added; this is done throughout the image data and the
output is computed. As a side note on the implementation layout:
conv_op_impl.h is the templated implementation of the conv_op.h file, which is
why they are separate files.
)DOC";
std::function<void(OpSchema&)> ConvFusionDocGenerator(const char* dim) {
return [=](OpSchema& schema) {
string doc = R"DOC(
The convolution fusion operator consumes an input vector, a {dim}filter blob,
a bias blob and another input vector and computes the output. This operator
gives the chance to fuse the ReLU or element-wise Sum with a convolution
operator. {conv_fusion_doc})DOC";
c10::ReplaceAll(doc, "{dim}", dim);
c10::ReplaceAll(doc, "{conv_fusion_doc}", kConvFusionDoc);
schema.SetDoc(doc);
schema.Input(
0,
"X",
"Input data blob from previous layer; has size (N x C x H x W), "
"where N is the batch size, C is the number of channels, "
"and H and W are the height and width. Note that this is for the NCHW "
"usage. On the other hand, the NHWC Op has a different set of "
"dimension constraints. ");
schema.Input(
1,
"filter",
"The filter blob that will be used in the "
"convolutions; has size (M x C x kH x kW), where C is the number of "
"channels, and kH and kW are the height and width of the kernel.");
schema.Input(
2,
"bias",
"The 1D bias blob that is added through the "
"convolution; has size (M).");
schema.Input(
3,
"S",
"Input data blob for element-wise Sum fusion from previous layer; "
"has the same size of convolution output. Its input index should "
"be 2 if no bias for this convolution, and it MUST be inplace with "
"output Y.");
schema.Output(
0,
"Y",
"Output data blob that contains the result of the "
"convolution fusion. The output dimensions are functions of the kernel "
"size, stride size, and pad lengths."
"");
};
}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables,clang-diagnostic-unused-function)
OPERATOR_SCHEMA(ConvFusion)
.NumInputs(2, 4)
.NumOutputs(1)
.TensorInferenceFunction(ConvPoolOpBase<CPUContext>::TensorInferenceForConv)
.CostInferenceFunction(OpSchema::CostInferenceFunctionType(
ConvPoolOpBase<CPUContext>::CostInferenceForConv))
.Arg("fusion_type", "Which fusion type is used")
.AllowInplace({{2, 0}, {3, 0}})
.FillUsing(ConvFusionDocGenerator(""));
class IDEEPConvGradientOp final : public IDEEPConvPoolOpBase {
public:
USE_IDEEP_DEF_ALIASES();
USE_IDEEP_CONV_POOL_BASE_FUNCTIONS();
IDEEPConvGradientOp(const OperatorDef& operator_def, Workspace* ws)
: IDEEPConvPoolOpBase(operator_def, ws),
no_bias_(OperatorBase::GetSingleArgument<int>("no_bias", 0)) {
OPERATOR_NEEDS_FEATURE(
pad_l() == pad_r() && pad_t() == pad_b(),
"Uneven padding not supported.");
CAFFE_ENFORCE(
!(no_bias_ && OutputSize() == 3),
"If bias is not present, you should not have 3 grad output.");
CAFFE_ENFORCE(
OperatorBase::GetSingleArgument<int>("training_mode", 0),
"In order to backward propagate weights correctly, "
"please set training_mode=1");
}
// NOLINTNEXTLINE(modernize-use-override,modernize-use-equals-default)
virtual ~IDEEPConvGradientOp() {}
bool RunOnDeviceWithOrderNCHW() override {
const auto& X = Input(INPUT);
const auto& filter = Input(FILTER);
const auto& dY = Input(OUTPUT_GRAD);
auto* dfilter = Output(FILTER_GRAD);
if (no_bias_) {
ideep::convolution_backward_weights::compute(
X,
dY,
filter.get_dims(),
*dfilter,
{stride_.begin(), stride_.end()},
{dilation_.begin(), dilation_.end()},
pad_tl(),
pad_br(),
group_);
} else {
auto* dbias = Output(BIAS_OR_INPUT_GRAD);
ideep::convolution_backward_weights::compute(
X,
dY,
filter.get_dims(),
*dfilter,
*dbias,
{stride_.begin(), stride_.end()},
{dilation_.begin(), dilation_.end()},
pad_tl(),
pad_br(),
group_);
}
if (OutputSize() == 3 || (no_bias_ && (OutputSize() == 2))) {
auto* dX = Output(no_bias_ ? BIAS_OR_INPUT_GRAD : INPUT_GRAD);
ideep::convolution_backward_data::compute(
dY,
filter,
X.get_dims(),
*dX,
{stride_.begin(), stride_.end()},
{dilation_.begin(), dilation_.end()},
pad_tl(),
pad_br(),
group_);
}
return true;
}
private:
bool no_bias_;
INPUT_TAGS(INPUT, FILTER, OUTPUT_GRAD);
OUTPUT_TAGS(FILTER_GRAD, BIAS_OR_INPUT_GRAD, INPUT_GRAD);
};
REGISTER_IDEEP_OPERATOR(Conv, IDEEPConvOp);
REGISTER_IDEEP_OPERATOR(ConvFusion, IDEEPConvFusionOp);
REGISTER_IDEEP_OPERATOR(ConvGradient, IDEEPConvGradientOp);
} // namespace
|