1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
|
#include "caffe2/operators/expand_squeeze_dims_op.h"
#include <caffe2/ideep/ideep_utils.h>
#include <caffe2/ideep/operators/operator_fallback_ideep.h>
using namespace caffe2;
namespace {
class IDEEPExpandDimsOp final : public IDEEPOperator {
public:
USE_IDEEP_DEF_ALIASES();
USE_IDEEP_OPERATOR_FUNCTIONS();
using FALLBACK_OP = IDEEPFallbackOp<ExpandDimsOp<CPUContext>, SkipIndices<0>>;
IDEEPExpandDimsOp(const OperatorDef& operator_def, Workspace* ws)
: IDEEPOperator(operator_def, ws),
fallback_(operator_def, ws) {
dims_ = OperatorBase::GetRepeatedArgument<int>("dims");
auto originalSize = dims_.size();
CAFFE_ENFORCE_GT(originalSize, 0, "Parameter `dims` must be provided.");
std::sort(dims_.begin(), dims_.end());
dims_.erase(std::unique(dims_.begin(), dims_.end()), dims_.end());
if (dims_.size() < originalSize) {
LOG(WARNING) << "Parameter `dims` has repeated dimensions.";
}
CAFFE_ENFORCE_GE(dims_.front(), 0, "Dimension ids must be non-negative.");
}
// NOLINTNEXTLINE(modernize-use-equals-default)
~IDEEPExpandDimsOp() override {}
bool RunOnDevice() override {
if (!OperatorBase::InputBlob(INPUT).template IsType<itensor>()) {
return fallback_.Run(0);
}
const auto& X = Input(INPUT);
auto* Y = Output(OUTPUT);
if (&X != Y) {
// Copy if not inplace
ideep::direct_copy::compute(X, *Y);
}
if (dims_.empty()) {
return true;
}
auto newDims = X.get_dims();
CAFFE_ENFORCE_GE(
newDims.size() + dims_.size(),
dims_.back() + 1,
"Input needs at least ",
(1 + dims_.back() - dims_.size()),
" dimensions given `dims`.");
for (const auto dim : dims_) {
newDims.insert(newDims.begin() + dim, 1);
}
Y->reshape(newDims);
return true;
}
private:
std::vector<int> dims_;
FALLBACK_OP fallback_;
INPUT_TAGS(INPUT);
OUTPUT_TAGS(OUTPUT);
};
class IDEEPSqueezeOp final : public IDEEPOperator {
public:
USE_IDEEP_DEF_ALIASES();
USE_IDEEP_OPERATOR_FUNCTIONS();
using FALLBACK_OP = IDEEPFallbackOp<SqueezeOp<CPUContext>, SkipIndices<0>>;
IDEEPSqueezeOp(const OperatorDef& operator_def, Workspace* ws)
: IDEEPOperator(operator_def, ws),
fallback_(operator_def, ws) {
dims_ = OperatorBase::GetRepeatedArgument<int>("dims");
auto originalSize = dims_.size();
CAFFE_ENFORCE_GT(originalSize, 0, "Parameter `dims` must be provided.");
std::sort(dims_.begin(), dims_.end());
dims_.erase(std::unique(dims_.begin(), dims_.end()), dims_.end());
if (dims_.size() < originalSize) {
LOG(WARNING) << "Parameter `dims` has repeated dimensions.";
}
CAFFE_ENFORCE_GE(dims_.front(), 0, "Dimension ids must be non-negative.");
}
// NOLINTNEXTLINE(modernize-use-equals-default)
~IDEEPSqueezeOp() override {}
bool RunOnDevice() override {
if (!OperatorBase::InputBlob(INPUT).template IsType<itensor>()) {
return fallback_.Run(0);
}
const auto& X = Input(INPUT);
auto* Y = Output(OUTPUT);
CAFFE_ENFORCE_GT(
X.ndims(),
dims_.back(),
"Input needs at least ",
(dims_.back() + 1),
" dimensions.");
const auto& ideep_dims = X.get_dims();
std::vector<int64_t> dims(ideep_dims.begin(), ideep_dims.end());
const auto new_dims = SqueezeOp<IDEEPContext>::ComputeDims(dims, dims_);
itensor::dims new_dims_ideep(new_dims.begin(), new_dims.end());
if (&X != Y) {
// Copy if not inplace
ideep::direct_copy::compute(X, *Y);
}
Y->reshape(new_dims_ideep);
return true;
}
private:
std::vector<int> dims_;
FALLBACK_OP fallback_;
INPUT_TAGS(INPUT);
OUTPUT_TAGS(OUTPUT);
};
REGISTER_IDEEP_OPERATOR(ExpandDims, IDEEPExpandDimsOp);
REGISTER_IDEEP_OPERATOR(Squeeze, IDEEPSqueezeOp);
} // namespace
|