File: momentum_sgd_op.cc

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (131 lines) | stat: -rw-r--r-- 4,401 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
#include <caffe2/ideep/ideep_utils.h>

using namespace caffe2;

namespace {

void momentum_sgd_update(
    const int N,
    const float* g,
    const float* m,
    float* ng,
    float* nm,
    const float* lr,
    const float momentum,
    const bool nesterov,
    float* param) {
  const float LR = lr[0];
#ifdef _OPENMP
#pragma omp parallel for schedule(static)
#endif
  for (auto i = 0; i < N; ++i) {
    if (!nesterov) {
      const float adjusted_gradient = LR * g[i] + momentum * m[i];
      nm[i] = adjusted_gradient;
      ng[i] = adjusted_gradient;
    } else {
      const float mi = m[i];
      const float mi_new = momentum * mi + LR * g[i];
      nm[i] = mi_new;
      ng[i] = (1 + momentum) * mi_new - momentum * mi;
    }

    if (param) {
      param[i] -= ng[i];
    }
  }
}

class IDEEPMomentumSGDOp final : public IDEEPOperator {
 public:
  USE_IDEEP_DEF_ALIASES();
  USE_IDEEP_OPERATOR_FUNCTIONS();

  IDEEPMomentumSGDOp(const OperatorDef& operator_def, Workspace* ws)
      : IDEEPOperator(operator_def, ws),
        momentum_(OperatorBase::GetSingleArgument<float>("momentum", 0.0)),
        nesterov_(OperatorBase::GetSingleArgument<int>("nesterov", 0)) {}

  bool RunOnDevice() override {
    CAFFE_ENFORCE(Input(GRAD).get_nelems() == Input(MOMENTUM).get_nelems());
    if (Input(GRAD) != *Output(OUTPUT_GRAD)) {
      Output(OUTPUT_GRAD)->init(Input(GRAD).get_descriptor());
    }
    if (Input(MOMENTUM) != *Output(OUTPUT_MOMENTUM)) {
      Output(OUTPUT_MOMENTUM)->init(Input(MOMENTUM).get_descriptor());
    }

    // TODO: Use itensor after 0-dim is supported. Now use CPU tensor.
    const auto& lr = OperatorBase::Input<TensorCPU>(LR, CPU);
    CAFFE_ENFORCE(lr.numel() == 1);

    momentum_sgd_update(
        Input(GRAD).get_nelems(),
        static_cast<float*>(Input(GRAD).get_data_handle()),
        static_cast<float*>(Input(MOMENTUM).get_data_handle()),
        static_cast<float*>(Output(OUTPUT_GRAD)->get_data_handle()),
        static_cast<float*>(Output(OUTPUT_MOMENTUM)->get_data_handle()),
        lr.template data<float>(),
        momentum_,
        nesterov_,
        nullptr);
    return true;
  }

 protected:
  // NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-non-private-member-variables-in-classes)
  float momentum_ = 0.9f;
  // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
  bool nesterov_;
  INPUT_TAGS(GRAD, MOMENTUM, LR);
  OUTPUT_TAGS(OUTPUT_GRAD, OUTPUT_MOMENTUM);
};

class IDEEPMomentumSGDUpdateOp final : public IDEEPOperator {
 public:
  USE_IDEEP_DEF_ALIASES();
  USE_IDEEP_OPERATOR_FUNCTIONS();
  IDEEPMomentumSGDUpdateOp(const OperatorDef& operator_def, Workspace* ws)
      : IDEEPOperator(operator_def, ws),
        momentum_(OperatorBase::GetSingleArgument<float>("momentum", 0.0)),
        nesterov_(OperatorBase::GetSingleArgument<int>("nesterov", 0)) {}

  bool RunOnDevice() override {
    CAFFE_ENFORCE(Input(GRAD).get_nelems() == Input(MOMENTUM).get_nelems());
    if (Input(GRAD) != *Output(OUTPUT_GRAD)) {
      Output(OUTPUT_GRAD)->init(Input(GRAD).get_descriptor());
    }
    if (Input(MOMENTUM) != *Output(OUTPUT_MOMENTUM)) {
      Output(OUTPUT_MOMENTUM)->init(Input(MOMENTUM).get_descriptor());
    }

    // TODO: Use itensor after 0-dim is supported. Now use CPU tensor.
    const auto& lr = OperatorBase::Input<TensorCPU>(LR, CPU);
    CAFFE_ENFORCE(lr.numel() == 1);

    momentum_sgd_update(
        Input(GRAD).get_nelems(),
        static_cast<float*>(Input(GRAD).get_data_handle()),
        static_cast<float*>(Input(MOMENTUM).get_data_handle()),
        static_cast<float*>(Output(OUTPUT_GRAD)->get_data_handle()),
        static_cast<float*>(Output(OUTPUT_MOMENTUM)->get_data_handle()),
        lr.template data<float>(),
        momentum_,
        nesterov_,
        static_cast<float*>(Output(OUTPUT_PARAM)->get_data_handle()));
    return true;
  }

 protected:
  // NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-non-private-member-variables-in-classes)
  float momentum_ = 0.9f;
  // NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
  bool nesterov_;
  INPUT_TAGS(GRAD, MOMENTUM, LR, PARAM);
  OUTPUT_TAGS(OUTPUT_GRAD, OUTPUT_MOMENTUM, OUTPUT_PARAM);
};

REGISTER_IDEEP_OPERATOR(MomentumSGD, IDEEPMomentumSGDOp);
REGISTER_IDEEP_OPERATOR(MomentumSGDUpdate, IDEEPMomentumSGDUpdateOp);

} // namespace