1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
|
#include <caffe2/ideep/operators/conv_pool_base_op.h>
using namespace caffe2;
namespace {
class IDEEPInt8ConvOp : public IDEEPConvPoolOpBase {
public:
USE_IDEEP_DEF_ALIASES();
USE_IDEEP_CONV_POOL_BASE_FUNCTIONS();
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
IDEEPInt8ConvOp(const OperatorDef& operator_def, Workspace* ws)
: IDEEPConvPoolOpBase(operator_def, ws),
scale_(this->template GetSingleArgument<float>("Y_scale", 1.0)),
zero_point_(
this->template GetSingleArgument<int32_t>("Y_zero_point", 0)) {
OPERATOR_NEEDS_FEATURE(pad_l() == pad_r() && pad_t() == pad_b(),
"Uneven padding not supported.");
fusion_type_ = FUSION_UNKNOWN;
last_input_ = BIAS_OR_INPUT_S;
algo_ = ialgo::convolution_direct;
auto conv_algorithm = OperatorBase::GetSingleArgument<int>(
"conv_algorithm", CONV_ALGORITHM_AUTO);
if (conv_algorithm == CONV_ALGORITHM_WINOGRAD) {
algo_ = ialgo::convolution_winograd;
}
CAFFE_ENFORCE(zero_point_ == 128 || zero_point_ == 0);
Y_scales_ = ConvertScales({scale_});
}
// NOLINTNEXTLINE(modernize-use-override,modernize-use-equals-default)
virtual ~IDEEPInt8ConvOp() {}
bool RunOnDeviceWithOrderNCHW() override {
const auto &X = Input(INPUT_X);
const auto &filter = Input(FILTER);
auto *Y = Output(OUTPUT);
CAFFE_ENFORCE(X.has_scale());
CAFFE_ENFORCE(4 == X.ndims() && 4 == filter.ndims());
CAFFE_ENFORCE(X.get_data_type() == idtype::s8
|| X.get_data_type() == idtype::u8);
CAFFE_ENFORCE(filter.get_dim(2) == kernel_h());
CAFFE_ENFORCE(filter.get_dim(3) == kernel_w());
CAFFE_ENFORCE(
X.get_dim(1) == filter.get_dim(1) * group_,
"Convolution op: input channels does not match: # of input channels ",
X.get_dim(1), " is not equal to kernel channels * group:",
filter.get_dim(1), "*", group_);
bool input_changed = (cached_X_descriptor_ != X.get_descriptor());
if (input_changed) {
cached_X_descriptor_ = X.dup_descriptor();
}
bool weights_changed = (cached_weights_descriptor_ != filter.get_descriptor());
if (weights_changed) {
cached_weights_descriptor_ = filter.dup_descriptor();
CAFFE_ENFORCE(filter.get_data_type() == idtype::s8 && filter.has_scale());
auto X_dt = X.get_data_type();
lowp_kind_ = ilowp_kind::LOWP_U8S8;
if (X_dt == idtype::s8) {
lowp_kind_ = ilowp_kind::LOWP_S8S8;
}
auto expected_descriptor =
ideep::convolution_forward::expected_weights_desc(
filter.get_dims(),
idtype::s8,
{stride_.begin(), stride_.end()},
pad_tl(),
pad_br(),
{dilation_.begin(), dilation_.end()},
group_,
algo_,
iprop::forward_inference,
X_dt, X.get_dims());
if (filter.get_desc() != expected_descriptor) {
filter_.init(expected_descriptor);
filter_.set_scale(filter.get_scale());
filter_.feed_from(filter);
} else {
filter_ = filter;
}
if (InputSize() > last_input_) {
// NOTE: If the bias is shared by other operators in this module,
// The existing bias scale should not satisfy current operator.
// Thus, we have to requantize it by current input and filter scales.
auto bias = Input(BIAS_OR_INPUT_S);
bias_.init({bias.get_dims(), idtype::s32});
iscale bias_scales (filter_.get_scale());
for (auto &scale : bias_scales) { scale *= X.get_scale()[0]; }
bias_.set_scale(bias_scales);
bias_.feed_from(bias);
}
}
bool with_bias = InputSize() > last_input_;
if (input_changed || weights_changed) {
auto Y_dims = CalcOutputDims(X, filter.get_dim(0));
if (with_bias) {
ideep::convolution_forward::prepare(
conv_param,
X,
filter_,
bias_,
Y_dims,
*Y,
{stride_.begin(), stride_.end()},
{dilation_.begin(), dilation_.end()},
pad_tl(),
pad_br(),
group_,
iscale(),
iscale(),
Y_scales_,
attr_,
algo_,
iprop::forward_inference,
lowp_kind_);
} else {
ideep::convolution_forward::prepare(
conv_param,
X,
filter_,
Y_dims,
*Y,
{stride_.begin(), stride_.end()},
{dilation_.begin(), dilation_.end()},
pad_tl(),
pad_br(),
group_,
iscale(),
iscale(),
Y_scales_,
attr_,
algo_,
iprop::forward_inference,
lowp_kind_);
}
}
if (with_bias) {
ideep::convolution_forward::compute(conv_param, X, filter_, bias_, *Y);
} else {
ideep::convolution_forward::compute(conv_param, X, filter_, *Y);
}
if (fusion_type_ != FUSION_CONV_RELU && fusion_type_ != FUSION_UNKNOWN) {
CAFFE_ENFORCE(
Y == &(Input(InputSize() - 1)),
"Convolution fusion op: InPlace is enforced for sum fusion.");
}
return true;
}
protected:
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
iattr attr_;
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
ialgo algo_;
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
float scale_;
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
int last_input_;
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
int32_t zero_point_;
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
ilowp_kind lowp_kind_;
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
FusionType fusion_type_;
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
itensor filter_, bias_;
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
iscale Y_scales_;
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
itensor::descriptor cached_X_descriptor_, cached_weights_descriptor_;
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
ideep::convolution_forward_params conv_param;
INPUT_TAGS(INPUT_X, FILTER, BIAS_OR_INPUT_S, INPUT_S);
OUTPUT_TAGS(OUTPUT);
};
class IDEEPInt8ConvReluOp final : public IDEEPInt8ConvOp {
public:
USE_IDEEP_DEF_ALIASES();
USE_IDEEP_CONV_POOL_BASE_FUNCTIONS();
IDEEPInt8ConvReluOp(const OperatorDef& operator_def, Workspace* ws)
: IDEEPInt8ConvOp(operator_def, ws) {
CAFFE_ENFORCE(zero_point_ == 0);
last_input_ = BIAS_OR_INPUT_S;
attr_ = iattr::fuse_relu();
fusion_type_ = FUSION_CONV_RELU;
}
// NOLINTNEXTLINE(modernize-use-override,modernize-use-equals-default)
virtual ~IDEEPInt8ConvReluOp() {}
};
class IDEEPInt8ConvSumOp final : public IDEEPInt8ConvOp {
public:
USE_IDEEP_DEF_ALIASES();
USE_IDEEP_CONV_POOL_BASE_FUNCTIONS();
IDEEPInt8ConvSumOp(const OperatorDef& operator_def, Workspace* ws)
: IDEEPInt8ConvOp(operator_def, ws) {
last_input_ = INPUT_S;
attr_ = iattr::fuse_sum();
fusion_type_ = FUSION_CONV_SUM;
}
// NOLINTNEXTLINE(modernize-use-override,modernize-use-equals-default)
virtual ~IDEEPInt8ConvSumOp() {}
};
class IDEEPInt8ConvSumReluOp final : public IDEEPInt8ConvOp {
public:
USE_IDEEP_DEF_ALIASES();
USE_IDEEP_CONV_POOL_BASE_FUNCTIONS();
IDEEPInt8ConvSumReluOp(const OperatorDef& operator_def, Workspace* ws)
: IDEEPInt8ConvOp(operator_def, ws) {
last_input_ = INPUT_S;
attr_ = iattr::residual();
fusion_type_ = FUSION_CONV_SUM_RELU;
}
// NOLINTNEXTLINE(modernize-use-override,modernize-use-equals-default)
virtual ~IDEEPInt8ConvSumReluOp() {}
};
REGISTER_IDEEP_OPERATOR_WITH_ENGINE(Int8Conv, DNNLOWP, IDEEPInt8ConvOp);
REGISTER_IDEEP_OPERATOR_WITH_ENGINE(Int8ConvRelu, DNNLOWP, IDEEPInt8ConvReluOp);
REGISTER_IDEEP_OPERATOR_WITH_ENGINE(Int8ConvSum, DNNLOWP, IDEEPInt8ConvSumOp);
REGISTER_IDEEP_OPERATOR_WITH_ENGINE(Int8ConvSumRelu, DNNLOWP, IDEEPInt8ConvSumReluOp);
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables,clang-diagnostic-unused-function)
OPERATOR_SCHEMA(Int8ConvSum)
.NumInputs(2, 4)
.NumOutputs(1)
.TensorInferenceFunction(ConvPoolOpBase<CPUContext>::TensorInferenceForConv)
.CostInferenceFunction(OpSchema::CostInferenceFunctionType(
ConvPoolOpBase<CPUContext>::CostInferenceForConv))
.AllowInplace({{2, 0}, {3, 0}});
// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables,clang-diagnostic-unused-function)
OPERATOR_SCHEMA(Int8ConvSumRelu)
.NumInputs(2, 4)
.NumOutputs(1)
.TensorInferenceFunction(ConvPoolOpBase<CPUContext>::TensorInferenceForConv)
.CostInferenceFunction(OpSchema::CostInferenceFunctionType(
ConvPoolOpBase<CPUContext>::CostInferenceForConv))
.AllowInplace({{2, 0}, {3, 0}});
} // namespace
|