File: image_input_op_gpu.cc

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (38 lines) | stat: -rw-r--r-- 1,130 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
#include "caffe2/core/common_gpu.h"
#include "caffe2/core/context_gpu.h"
#include "caffe2/image/image_input_op.h"

namespace caffe2 {

template <>
bool ImageInputOp<CUDAContext>::ApplyTransformOnGPU(
    const std::vector<std::int64_t>& dims,
    const c10::Device& type) {
  // GPU transform kernel allows explicitly setting output type
  if (output_type_ == TensorProto_DataType_FLOAT) {
    auto* image_output =
        OperatorBase::OutputTensor(0, dims, at::dtype<float>().device(type));
    TransformOnGPU<uint8_t, float, CUDAContext>(
        prefetched_image_on_device_,
        image_output,
        mean_gpu_,
        std_gpu_,
        &context_);
  } else if (output_type_ == TensorProto_DataType_FLOAT16) {
    auto* image_output =
        OperatorBase::OutputTensor(0, dims, at::dtype<at::Half>().device(type));
    TransformOnGPU<uint8_t, at::Half, CUDAContext>(
        prefetched_image_on_device_,
        image_output,
        mean_gpu_,
        std_gpu_,
        &context_);
  } else {
    return false;
  }
  return true;
}

REGISTER_CUDA_OPERATOR(ImageInput, ImageInputOp<CUDAContext>);

} // namespace caffe2