1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
|
#include "caffe2/core/init.h"
#include "caffe2/core/operator.h"
#include "caffe2/core/tensor.h"
#include "caffe2/utils/math.h"
#include "caffe2/utils/proto_utils.h"
#include "gtest/gtest.h"
#include <cmath>
#include <random>
namespace caffe2 {
namespace {
void AddNoiseInput(const vector<int64_t>& shape, const string& name, Workspace* ws) {
DeviceOption option;
CPUContext context(option);
Blob* blob = ws->CreateBlob(name);
auto* tensor = BlobGetMutableTensor(blob, CPU);
tensor->Resize(shape);
math::RandGaussian<float, CPUContext>(
tensor->size(), 0.0f, 3.0f, tensor->mutable_data<float>(), &context);
for (auto i = 0; i < tensor->size(); ++i) {
tensor->mutable_data<float>()[i] =
std::min(-5.0f, std::max(5.0f, tensor->mutable_data<float>()[i]));
}
}
void compareMaxPooling(int N,
int C,
int H,
int W,
int kernelH,
int kernelW,
int strideH,
int strideW,
int padT,
int padL,
int padB,
int padR,
float maxRelErr = 1.0e-5f,
float absErrForRelErrFailure = 1.0e-5f) {
Workspace ws;
OperatorDef def1;
def1.set_name("test");
def1.set_type("MaxPool");
def1.add_input("X");
def1.add_output("Y");
def1.add_arg()->CopyFrom(MakeArgument("kernel_h", kernelH));
def1.add_arg()->CopyFrom(MakeArgument("kernel_w", kernelW));
def1.add_arg()->CopyFrom(MakeArgument("stride_h", strideH));
def1.add_arg()->CopyFrom(MakeArgument("stride_w", strideW));
def1.add_arg()->CopyFrom(MakeArgument("pad_t", padT));
def1.add_arg()->CopyFrom(MakeArgument("pad_l", padL));
def1.add_arg()->CopyFrom(MakeArgument("pad_b", padB));
def1.add_arg()->CopyFrom(MakeArgument("pad_r", padR));
AddNoiseInput(vector<int64_t>{N, C, H, W}, "X", &ws);
unique_ptr<OperatorBase> op1(CreateOperator(def1, &ws));
EXPECT_NE(nullptr, op1.get());
EXPECT_TRUE(op1->Run());
const auto& X = ws.GetBlob("X")->Get<TensorCPU>();
const auto& Y = ws.GetBlob("Y")->Get<TensorCPU>();
// Compare all output points
for (int n = 0; n < Y.dim32(0); ++n) {
for (int c = 0; c < Y.dim32(1); ++c) {
for (int ph = 0; ph < Y.dim32(2); ++ph) {
for (int pw = 0; pw < Y.dim32(3); ++pw) {
// Reference implementations
int hstart = ph * strideH - padT;
int wstart = pw * strideW - padL;
int hend = std::min(hstart + kernelH, H);
int wend = std::min(wstart + kernelW, W);
hstart = std::max(hstart, 0);
wstart = std::max(wstart, 0);
const int pool_index = ph * Y.dim32(3) + pw;
float v = std::numeric_limits<float>::lowest();
for (int h = hstart; h < hend; ++h) {
for (int w = wstart; w < wend; ++w) {
const auto* Xdata =
X.data<float>() + n * X.dim(1) * X.dim(2) * X.dim(3) + c * X.dim(2) * X.dim(3);
const int input_index = h * W + w;
v = std::max(v, Xdata[input_index]);
}
}
EXPECT_EQ(Y.data<float>()[n * Y.dim(1) * Y.dim(2) * Y.dim(3) + c * Y.dim(2) * Y.dim(3) +
ph * Y.dim(3) + pw],
v);
}
}
}
}
}
int randInt(int a, int b) {
static std::random_device rd;
static std::mt19937 gen(rd());
return std::uniform_int_distribution<int>(a, b)(gen);
}
void runMaxPool(int kernel, int stride, int pad) {
int N = randInt(1, 2);
int C = randInt(1, 12);
int H = randInt(50, 100);
int W = randInt(50, 100);
int planesOut = randInt(1, 6);
compareMaxPooling(N, C, H, W, kernel, kernel, stride, stride, pad, pad, pad, pad);
}
TEST(PoolOp, MaxPool2x2s2p0Randomized) {
for (int i = 0; i < 40; ++i) {
runMaxPool(2, 2, 0);
}
}
TEST(PoolOp, MaxPool4x4s3p2Randomized) {
for (int i = 0; i < 40; ++i) {
runMaxPool(4, 3, 2);
}
}
TEST(PoolOp, MaxPool2x2s2p0Special) {
// 2x2s2p0 where H/W % 4 == 0
compareMaxPooling(2, 10, 40, 40, 2, 2, 2, 2, 0, 0, 0, 0, 0.05f, 0.1f);
// 2x2s2p0 where H/W % 4 != 0
compareMaxPooling(2, 10, 39, 39, 2, 2, 2, 2, 0, 0, 0, 0, 0.05f, 0.1f);
// 2x2s2p0 where H/W % 16 == 0
compareMaxPooling(2, 10, 64, 64, 2, 2, 2, 2, 0, 0, 0, 0, 0.05f, 0.1f);
}
TEST(PoolOp, MaxPoolFullyRandomized) {
for (auto i = 0; i < 40; ++i) {
auto kernelH = randInt(1, 5);
auto kernelW = randInt(1, 5);
auto strideH = randInt(1, 5);
auto strideW = randInt(1, 5);
auto padL = randInt(0, kernelW - 1);
auto padR = randInt(0, kernelW - 1);
auto padT = randInt(0, kernelH - 1);
auto padB = randInt(0, kernelH - 1);
auto H = randInt(std::max(1, kernelH - padT - padB), 100);
auto W = randInt(std::max(1, kernelW - padL - padR), 100);
auto C = randInt(1, 10);
auto N = randInt(1, 2);
compareMaxPooling(
N, C, H, W, kernelH, kernelW, strideH, strideW, padT, padL, padB, padR);
}
}
} // unnamed namespace
} // namespace caffe2
|