1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715
|
#include "caffe2/core/operator.h"
#include "caffe2/core/tensor.h"
#include "caffe2/core/types.h"
#include "caffe2/utils/proto_utils.h"
#include "nnapi.h"
namespace {
// Bug: ANEURALNETWORKS_UNMAPPABLE and ANEURALNETWORKS_OP_FAILED share the same
// enum value
void reportError(int result_code) {
switch (result_code) {
case ANEURALNETWORKS_NO_ERROR:
break;
case ANEURALNETWORKS_OUT_OF_MEMORY:
CAFFE_THROW("out of memory");
case ANEURALNETWORKS_INCOMPLETE:
CAFFE_THROW("incomplete");
case ANEURALNETWORKS_UNEXPECTED_NULL:
CAFFE_THROW("unexpected null");
case ANEURALNETWORKS_BAD_DATA:
CAFFE_THROW("bad data");
case ANEURALNETWORKS_OP_FAILED:
CAFFE_THROW("op failed or unmappable");
case ANEURALNETWORKS_BAD_STATE:
CAFFE_THROW("bad state");
default:
CAFFE_THROW("unknown error");
}
}
} // namespace
namespace caffe2 {
bool NNApi::loadNNApiLibrary() {
return dlnnapi_load(&libnnapi_, DLNNAPI_FLAG_VERSION_27);
}
NNApi::~NNApi() {
if (run_end_) {
libnnapi_.ANeuralNetworksEvent_free(run_end_);
}
if (run_) {
libnnapi_.ANeuralNetworksExecution_free(run_);
}
if (compilation_) {
libnnapi_.ANeuralNetworksCompilation_free(compilation_);
}
if (model_) {
libnnapi_.ANeuralNetworksModel_free(model_);
}
}
bool NNApi::run(const TensorVector& inputs, TensorVector* outputs) {
CAFFE_ENFORCE(inputs.size() <= run_net_.external_input_size());
try {
init(inputs, outputs);
} catch (const std::exception& e) {
LOG(ERROR) << "Error during model initialization: " << e.what();
return false;
}
try {
VLOG(1) << "Start compute";
int result_code =
libnnapi_.ANeuralNetworksExecution_startCompute(run_, &run_end_);
if (result_code != ANEURALNETWORKS_NO_ERROR) {
reportError(result_code);
}
result_code = libnnapi_.ANeuralNetworksEvent_wait(run_end_);
if (result_code != ANEURALNETWORKS_NO_ERROR) {
reportError(result_code);
}
VLOG(1) << "Finish compute";
} catch (const std::exception& e) {
LOG(ERROR) << "Error during model run: " << e.what();
return false;
}
return true;
}
void NNApi::getConvPoolArgs(const ArgumentHelper& helper, ConvPoolArgs& args) {
std::vector<int> kernel(helper.GetRepeatedArgument<int>("kernels"));
std::vector<int> stride(helper.GetRepeatedArgument<int>("strides"));
std::vector<int> pads(helper.GetRepeatedArgument<int>("pads"));
// Get old arguments values
if (helper.HasArgument("kernel")) {
kernel.resize(2, helper.GetSingleArgument<int>("kernel", 0));
} else if (helper.HasArgument("kernelh") && helper.HasArgument("kernelw")) {
kernel.push_back(helper.GetSingleArgument<int>("kernelh", 0));
kernel.push_back(helper.GetSingleArgument<int>("kernelw", 0));
}
if (helper.HasArgument("stride")) {
stride.resize(2, helper.GetSingleArgument<int>("stride", 0));
} else if (helper.HasArgument("stride_h") && helper.HasArgument("stride_w")) {
stride.push_back(helper.GetSingleArgument<int>("stride_h", 0));
stride.push_back(helper.GetSingleArgument<int>("stride_w", 0));
}
if (helper.HasArgument("pad")) {
pads.resize(4, helper.GetSingleArgument<int>("pad", 0));
} else if (
helper.HasArgument("pad_t") && helper.HasArgument("pad_l") &&
helper.HasArgument("pad_b") && helper.HasArgument("pad_r")) {
pads.push_back(helper.GetSingleArgument<int>("pad_t", 0));
pads.push_back(helper.GetSingleArgument<int>("pad_l", 0));
pads.push_back(helper.GetSingleArgument<int>("pad_b", 0));
pads.push_back(helper.GetSingleArgument<int>("pad_r", 0));
}
// Commit values
args.kernel_h = kernel.size() > 0 ? kernel[0] : 1;
args.kernel_w = kernel.size() > 1 ? kernel[1] : args.kernel_h;
args.stride_x = stride.size() > 0 ? stride[0] : 1;
args.stride_y = stride.size() > 1 ? stride[1] : 1;
args.pad_t = pads.size() > 0 ? pads[0] : 0;
args.pad_l = pads.size() > 1 ? pads[1] : 0;
args.pad_b = pads.size() > 2 ? pads[2] : 0;
args.pad_r = pads.size() > 3 ? pads[3] : 0;
}
void NNApi::addPooling(
const OperatorDef& op,
OperationCode op_code,
bool fuse_relu)
// clang-format off
{
// clang-format on
VLOG(1) << "Add AveragePool to NN model";
CAFFE_ENFORCE_EQ(op.input_size(), 1);
CAFFE_ENFORCE_EQ(op.output_size(), 1);
ArgumentHelper helper(op);
StorageOrder order = StringToStorageOrder(
helper.GetSingleArgument<std::string>("order", "NCHW"));
if (order == NCHW) {
CAFFE_THROW("NN API supports NHWC only");
}
ConvPoolArgs args;
getConvPoolArgs(helper, args);
CAFFE_ENFORCE_EQ(
args.stride_x,
args.stride_y,
"NN API only supports stride_x == stride_y");
// add input operands to model
const uint32_t input_indices_count = 10;
const uint32_t output_indices_count = 1;
uint32_t input_indices[input_indices_count];
uint32_t output_indices[output_indices_count];
uint32_t idx = 0;
// input
const std::string& input = op.input(0);
const std::vector<uint32_t>& input_dims = tensor_dims_[input];
input_indices[idx++] = operand_map_[input];
CAFFE_ENFORCE_EQ(input_dims.size(), 4);
uint32_t batches = input_dims[0];
uint32_t input_height = input_dims[1];
uint32_t input_width = input_dims[2];
uint32_t channel = input_dims[3];
// pads in the order of left, right, top, bottom
input_indices[idx++] = addScalarOperand(args.pad_l);
input_indices[idx++] = addScalarOperand(args.pad_r);
input_indices[idx++] = addScalarOperand(args.pad_t);
input_indices[idx++] = addScalarOperand(args.pad_b);
// strides
input_indices[idx++] = addScalarOperand(args.stride_x);
input_indices[idx++] = addScalarOperand(args.stride_y);
// kernel size
input_indices[idx++] = addScalarOperand(args.kernel_h);
input_indices[idx++] = addScalarOperand(args.kernel_w);
// fuse relu
FuseCode fuse = fuse_relu ? FuseCode::ANEURALNETWORKS_FUSED_RELU
: FuseCode::ANEURALNETWORKS_FUSED_NONE;
input_indices[idx] = addScalarOperand(fuse);
// output
uint32_t output_height =
(input_height - args.kernel_h + args.pad_t + args.pad_b) / args.stride_y +
1;
uint32_t output_width =
(input_width - args.kernel_w + args.pad_l + args.pad_r) / args.stride_x +
1;
float output_scale = helper.GetSingleArgument<float>("output_scale", 1.0);
int output_zero_point = helper.GetSingleArgument<int>("output_zero_point", 0);
std::vector<uint32_t> dims({batches, output_height, output_width, channel});
output_indices[0] = addTensorOperand(
op.output(0), tensor_type_, dims, output_scale, output_zero_point);
int result_code = libnnapi_.ANeuralNetworksModel_addOperation(
model_, op_code, input_indices_count, input_indices, 1, output_indices);
if (result_code != ANEURALNETWORKS_NO_ERROR) {
reportError(result_code);
}
}
void NNApi::addConv(const OperatorDef& op, bool fuse_relu) {
VLOG(1) << "Add Conv to NN model";
CAFFE_ENFORCE_EQ(op.input_size(), 3);
CAFFE_ENFORCE_EQ(op.output_size(), 1);
ArgumentHelper helper(op);
StorageOrder order = StringToStorageOrder(
helper.GetSingleArgument<std::string>("order", "NCHW"));
CAFFE_ENFORCE_EQ(order, NHWC, "NN API supports NHWC only");
// input
const std::string& input = op.input(0);
const std::vector<uint32_t>& input_dims = tensor_dims_[input];
CAFFE_ENFORCE_EQ(input_dims.size(), 4);
uint32_t batches = input_dims[0];
uint32_t input_height = input_dims[1];
uint32_t input_width = input_dims[2];
uint32_t input_channel = input_dims[3];
uint32_t group = helper.GetSingleArgument<int>("group", 1);
bool run_depthwise = false;
if (group > 1) {
CAFFE_ENFORCE_EQ(
group,
input_channel,
"NN API doesn't support non-depthwise convolution with groups");
run_depthwise = true;
}
ConvPoolArgs args;
getConvPoolArgs(helper, args);
CAFFE_ENFORCE_EQ(
args.stride_x,
args.stride_y,
"NN API only supports stride_x == stride_y");
vector<int> dilation(helper.GetRepeatedArgument<int>("dilations"));
if (helper.HasArgument("dilation")) {
dilation.resize(2, helper.GetSingleArgument<int>("dilation", 0));
} else if (
helper.HasArgument("dilationh") && helper.HasArgument("dilationw")) {
dilation.push_back(helper.GetSingleArgument<int>("dilation_h", 0));
dilation.push_back(helper.GetSingleArgument<int>("dilation_w", 0));
}
for (auto d : dilation) {
CAFFE_ENFORCE_EQ(d, 1, "NN API only supports dialation == 1");
}
// add input operands to model
const uint32_t input_indices_count = run_depthwise ? 11 : 10;
const uint32_t output_indices_count = 1;
uint32_t input_indices[input_indices_count];
uint32_t output_indices[output_indices_count];
uint32_t idx = 0;
// input
input_indices[idx++] = operand_map_[input];
// weight
const std::string& weight_name = op.input(1);
const auto& weight = ws_.GetBlob(weight_name)->Get<TensorCPU>();
std::vector<uint32_t> weight_dims;
for (auto dim : weight.sizes()) {
weight_dims.push_back(dim);
}
CAFFE_ENFORCE_EQ(weight_dims.size(), 4);
uint32_t num_kernels = weight_dims[0];
uint32_t kernel_h = weight_dims[1];
uint32_t kernel_w = weight_dims[2];
uint32_t kernel_depth = weight_dims[3];
CAFFE_ENFORCE_EQ(input_channel, kernel_depth);
if (run_depthwise) {
CAFFE_ENFORCE_EQ(num_kernels, 1);
}
float weight_scale = helper.GetSingleArgument<float>("weight_scale", 1.0);
int weight_zero_point = helper.GetSingleArgument<int>("weight_zero_point", 0);
uint32_t weight_idx = addTensorOperand(
weight_name, tensor_type_, weight_dims, weight_scale, weight_zero_point);
int result_code = libnnapi_.ANeuralNetworksModel_setOperandValue(
model_, weight_idx, weight.raw_data(), weight.nbytes());
if (result_code != ANEURALNETWORKS_NO_ERROR) {
reportError(result_code);
}
input_indices[idx++] = weight_idx;
// bias
const std::string& bias_name = op.input(2);
const auto& bias = ws_.GetBlob(bias_name)->Get<TensorCPU>();
std::vector<uint32_t> bias_dims;
CAFFE_ENFORCE_EQ(bias.ndim(), 1);
uint32_t bias_size = bias.dim(0);
if (!run_depthwise) {
CAFFE_ENFORCE_EQ(num_kernels, bias_size);
} else {
CAFFE_ENFORCE_EQ(kernel_depth, bias_size);
}
bias_dims.push_back(bias_size);
OperandCode bias_type = tensor_type_ == ANEURALNETWORKS_TENSOR_FLOAT32
? ANEURALNETWORKS_TENSOR_FLOAT32
: ANEURALNETWORKS_TENSOR_INT32;
if (bias_type == ANEURALNETWORKS_TENSOR_FLOAT32) {
CAFFE_ENFORCE(bias.IsType<float>());
} else if (bias_type == ANEURALNETWORKS_TENSOR_INT32) {
CAFFE_ENFORCE(bias.IsType<int>());
}
uint32_t bias_idx = addTensorOperand(bias_name, bias_type, bias_dims);
result_code = libnnapi_.ANeuralNetworksModel_setOperandValue(
model_, bias_idx, bias.raw_data(), bias.nbytes());
if (result_code != ANEURALNETWORKS_NO_ERROR) {
reportError(result_code);
}
input_indices[idx++] = bias_idx;
// pads in the order of left, right, top, bottom
input_indices[idx++] = addScalarOperand(args.pad_l);
input_indices[idx++] = addScalarOperand(args.pad_r);
input_indices[idx++] = addScalarOperand(args.pad_t);
input_indices[idx++] = addScalarOperand(args.pad_b);
// strides
input_indices[idx++] = addScalarOperand(args.stride_x);
input_indices[idx++] = addScalarOperand(args.stride_y);
// depth_wise
if (run_depthwise) {
// depthwise multiplier == 1
input_indices[idx++] = addScalarOperand(1);
}
// fuse relu
FuseCode fuse = fuse_relu ? FuseCode::ANEURALNETWORKS_FUSED_RELU
: FuseCode::ANEURALNETWORKS_FUSED_NONE;
input_indices[idx] = addScalarOperand(fuse);
// output
uint32_t output_channel = run_depthwise ? kernel_depth : num_kernels;
uint32_t output_height =
(input_height - args.kernel_h + args.pad_t + args.pad_b) / args.stride_y +
1;
uint32_t output_width =
(input_width - args.kernel_w + args.pad_l + args.pad_r) / args.stride_x +
1;
float output_scale = helper.GetSingleArgument<float>("output_scale", 1.0);
int output_zero_point = helper.GetSingleArgument<int>("output_zero_point", 0);
std::vector<uint32_t> dims(
{batches, output_height, output_width, output_channel});
output_indices[0] = addTensorOperand(
op.output(0), tensor_type_, dims, output_scale, output_zero_point);
if (run_depthwise) {
CAFFE_ENFORCE_EQ(input_indices_count, 11);
result_code = libnnapi_.ANeuralNetworksModel_addOperation(
model_,
ANEURALNETWORKS_DEPTHWISE_CONV_2D,
input_indices_count,
input_indices,
output_indices_count,
output_indices);
if (result_code != ANEURALNETWORKS_NO_ERROR) {
reportError(result_code);
}
} else {
CAFFE_ENFORCE_EQ(input_indices_count, 10);
result_code = libnnapi_.ANeuralNetworksModel_addOperation(
model_,
ANEURALNETWORKS_CONV_2D,
input_indices_count,
input_indices,
output_indices_count,
output_indices);
if (result_code != ANEURALNETWORKS_NO_ERROR) {
reportError(result_code);
}
}
}
void NNApi::addRelu(const OperatorDef& op) {
VLOG(1) << "Add Relu to NN model";
CAFFE_ENFORCE_EQ(op.input_size(), 1);
CAFFE_ENFORCE_EQ(op.output_size(), 1);
const std::string& input = op.input(0);
uint32_t input_idx = operand_map_[input];
ArgumentHelper helper(op);
float output_scale = helper.GetSingleArgument<float>("output_scale", 1.0);
int output_zero_point = helper.GetSingleArgument<int>("output_zero_point", 0);
uint32_t output_idx = addTensorOperand(
op.output(0),
tensor_type_,
tensor_dims_[input],
output_scale,
output_zero_point);
int result_code = libnnapi_.ANeuralNetworksModel_addOperation(
model_, ANEURALNETWORKS_RELU, 1, &input_idx, 1, &output_idx);
if (result_code != ANEURALNETWORKS_NO_ERROR) {
reportError(result_code);
}
}
void NNApi::addSoftmax(const OperatorDef& op) {
VLOG(1) << "Add Softmax to NN model";
ArgumentHelper helper(op);
CAFFE_ENFORCE_EQ(
helper.GetSingleArgument<int>("axis", 1),
1,
"NN API only supports axis == 1");
uint32_t input_indices[2];
const std::string& input = op.input(0);
input_indices[0] = operand_map_[input];
const auto& input_dims = tensor_dims_[input];
CAFFE_ENFORCE(
input_dims.size() == 2 || input_dims.size() == 4,
"Supported tensor rank: 2 or 4");
// the positive scaling factor for the exponent, beta
const float scale = 1.0;
input_indices[1] = addFloatOperand(scale);
float output_scale = helper.GetSingleArgument<float>("output_scale", 1.0);
int output_zero_point = helper.GetSingleArgument<int>("output_zero_point", 0);
if (tensor_type_ == ANEURALNETWORKS_TENSOR_QUANT8_ASYMM) {
CAFFE_ENFORCE_EQ(output_scale, 1.f / 256);
CAFFE_ENFORCE_EQ(output_zero_point, 0);
}
uint32_t output_idx = addTensorOperand(
op.output(0),
tensor_type_,
tensor_dims_[input],
output_scale,
output_zero_point);
int result_code = libnnapi_.ANeuralNetworksModel_addOperation(
model_, ANEURALNETWORKS_SOFTMAX, 2, input_indices, 1, &output_idx);
if (result_code != ANEURALNETWORKS_NO_ERROR) {
reportError(result_code);
}
}
// int32_t
uint32_t NNApi::addScalarOperand(int32_t val) {
ANeuralNetworksOperandType scalar;
scalar.type = ANEURALNETWORKS_INT32;
scalar.scale = 0;
scalar.zeroPoint = 0;
scalar.dimensionCount = 0;
scalar.dimensions = NULL;
int result_code = libnnapi_.ANeuralNetworksModel_addOperand(model_, &scalar);
if (result_code != ANEURALNETWORKS_NO_ERROR) {
reportError(result_code);
}
result_code = libnnapi_.ANeuralNetworksModel_setOperandValue(
model_, operand_idx, &val, sizeof(val));
if (result_code != ANEURALNETWORKS_NO_ERROR) {
reportError(result_code);
}
VLOG(1) << "Added scalar, " << val << ", at " << operand_idx;
return operand_idx++;
}
// float32
uint32_t NNApi::addFloatOperand(float val) {
ANeuralNetworksOperandType scalar;
scalar.type = ANEURALNETWORKS_TENSOR_FLOAT32;
scalar.scale = 0;
scalar.zeroPoint = 0;
scalar.dimensionCount = 0;
scalar.dimensions = NULL;
int result_code = libnnapi_.ANeuralNetworksModel_addOperand(model_, &scalar);
if (result_code != ANEURALNETWORKS_NO_ERROR) {
reportError(result_code);
}
result_code = libnnapi_.ANeuralNetworksModel_setOperandValue(
model_, operand_idx, &val, sizeof(val));
if (result_code != ANEURALNETWORKS_NO_ERROR) {
reportError(result_code);
}
VLOG(1) << "Added scalar, " << val << ", at " << operand_idx;
return operand_idx++;
}
uint32_t NNApi::addTensorOperand(
const std::string& blob,
OperandCode type,
std::vector<uint32_t>& dims,
float scale,
int32_t zero_point)
// clang-format off
{
// clang-format on
auto found = operand_map_.find(blob);
if (found == operand_map_.end()) {
ANeuralNetworksOperandType tensor;
tensor.type = type;
tensor.scale = scale;
tensor.zeroPoint = zero_point;
tensor.dimensionCount = dims.size();
tensor.dimensions = dims.data();
int result_code =
libnnapi_.ANeuralNetworksModel_addOperand(model_, &tensor);
if (result_code != ANEURALNETWORKS_NO_ERROR) {
reportError(result_code);
}
operand_map_[blob] = operand_idx++;
tensor_dims_[blob] = dims;
VLOG(1) << "Added operand, " << blob << ", at " << operand_map_[blob];
}
return operand_map_[blob];
}
void NNApi::init(const TensorVector& inputs, TensorVector* outputs) {
// model
if (!model_) {
int result_code = libnnapi_.ANeuralNetworksModel_create(&model_);
if (result_code != ANEURALNETWORKS_NO_ERROR) {
reportError(result_code);
}
if (!model_) {
CAFFE_THROW("Failed to create NN model");
} else {
LOG(INFO) << "Created NN model";
}
ArgumentHelper helper(run_net_);
float scale = helper.GetSingleArgument<float>("scale", 1.0);
int zero_point = helper.GetSingleArgument<int>("zero_point", 0);
// add external input dimension
for (int i = 0; i < inputs.size(); i++) {
if (inputs[i]->IsType<float>()) {
tensor_type_ = ANEURALNETWORKS_TENSOR_FLOAT32;
} else if (inputs[i]->IsType<uint8_t>()) {
tensor_type_ = ANEURALNETWORKS_TENSOR_QUANT8_ASYMM;
} else {
CAFFE_THROW("Unsupported tensor type");
}
const std::string& input_blob = run_net_.external_input(i);
std::vector<uint32_t> dims;
for (auto dim : inputs[i]->sizes()) {
dims.push_back(dim);
}
addTensorOperand(input_blob, tensor_type_, dims, scale, zero_point);
}
// add operands and operations
for (const auto& op : run_net_.op()) {
if (operator_map_.count(op.type()) == 0) {
CAFFE_THROW("Unsupported operator");
}
switch (operator_map_[op.type()]) {
case AVERAGEPOOL:
addPooling(op, ANEURALNETWORKS_AVERAGE_POOL_2D);
break;
case CONV:
addConv(op);
break;
case MAXPOOL:
addPooling(op, ANEURALNETWORKS_MAX_POOL_2D);
break;
case RELU:
addRelu(op);
break;
case SOFTMAX:
addSoftmax(op);
break;
default:
CAFFE_THROW("Unsupported operator");
break;
}
}
// model inputs and outputs
int output_size = run_net_.external_output_size();
std::vector<uint32_t> input_indices(inputs.size());
std::vector<uint32_t> output_indices(output_size);
for (int i = 0; i < inputs.size(); i++) {
input_indices[i] = operand_map_[run_net_.external_input(i)];
}
for (int i = 0; i < output_size; i++) {
output_indices[i] = operand_map_[run_net_.external_output(i)];
}
result_code = libnnapi_.ANeuralNetworksModel_identifyInputsAndOutputs(
model_,
inputs.size(),
input_indices.data(),
output_size,
output_indices.data());
if (result_code != ANEURALNETWORKS_NO_ERROR) {
reportError(result_code);
}
result_code = libnnapi_.ANeuralNetworksModel_finish(model_);
if (result_code != ANEURALNETWORKS_NO_ERROR) {
reportError(result_code);
}
LOG(INFO) << "Finish creating model";
// compile
if (!compilation_) {
result_code =
libnnapi_.ANeuralNetworksCompilation_create(model_, &compilation_);
if (result_code != ANEURALNETWORKS_NO_ERROR) {
reportError(result_code);
}
result_code = libnnapi_.ANeuralNetworksCompilation_setPreference(
compilation_, preference_);
if (result_code != ANEURALNETWORKS_NO_ERROR) {
reportError(result_code);
}
result_code = libnnapi_.ANeuralNetworksCompilation_finish(compilation_);
if (result_code != ANEURALNETWORKS_NO_ERROR) {
reportError(result_code);
}
LOG(INFO) << "Finish compilation";
}
// pre-execution
if (!run_) {
result_code =
libnnapi_.ANeuralNetworksExecution_create(compilation_, &run_);
if (result_code != ANEURALNETWORKS_NO_ERROR) {
reportError(result_code);
}
LOG(INFO) << "Created model execution";
}
// set external input and output
for (int i = 0; i < inputs.size(); i++) {
result_code = libnnapi_.ANeuralNetworksExecution_setInput(
run_, i, NULL, inputs[i]->raw_data(), inputs[i]->size());
if (result_code != ANEURALNETWORKS_NO_ERROR) {
reportError(result_code);
}
VLOG(1) << "Set external input " << i << " at " << inputs[i]->raw_data()
<< ", size = " << inputs[i]->size();
}
// allocate memory for outputs
for (int i = 0; i < output_size; i++) {
const std::string& blob = run_net_.external_output(i);
if (operand_map_.find(blob) == operand_map_.end()) {
CAFFE_THROW("Unknown external output, ", blob);
}
uint32_t idx = operand_map_[blob];
if (tensor_dims_.find(blob) == tensor_dims_.end()) {
CAFFE_THROW("Operand dimension unknown");
}
std::vector<int> output_dims;
for (auto dim : tensor_dims_[blob]) {
output_dims.push_back(dim);
}
auto* tensor = BlobGetMutableTensor(ws_.CreateBlob(blob), CPU);
tensor->Resize(output_dims);
outputs->push_back(tensor);
if (tensor_type_ == ANEURALNETWORKS_TENSOR_FLOAT32) {
result_code = libnnapi_.ANeuralNetworksExecution_setOutput(
run_,
i,
NULL,
(void*)tensor->template mutable_data<float>(),
tensor->size());
if (result_code != ANEURALNETWORKS_NO_ERROR) {
reportError(result_code);
}
} else {
result_code = libnnapi_.ANeuralNetworksExecution_setOutput(
run_,
i,
NULL,
(void*)tensor->template mutable_data<uint8_t>(),
tensor->size());
if (result_code != ANEURALNETWORKS_NO_ERROR) {
reportError(result_code);
}
}
VLOG(1) << "Set external output " << i << " at " << tensor->raw_data()
<< ", size = " << tensor->size();
}
}
}
} // namespace caffe2
|