1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
|
#include "ulp.h"
#include <cstring>
#include "caffe2/operators/conv_pool_op_base.h"
#include "caffe2/utils/eigen_utils.h"
#include "ulp_neon.h"
namespace caffe2 {
void uniformQuantize2b1b(const TensorCPU& X,
const std::vector<std::unique_ptr<TensorCPU>>& XQ,
float offset,
float inter_center_distance) {
CAFFE_ENFORCE_GT(X.ndim(), 1);
const auto N = X.size_to_dim(X.ndim() - 1);
auto C = X.size() / N;
const auto QC = divRoundUp(C, 8);
auto XQs = X.sizes().vec();
XQs[X.ndim() - 1] = QC;
CAFFE_ENFORCE_EQ(XQ.size(), k2b1bXBits);
for (auto i = 0; i < k2b1bXBits; ++i) {
XQ[i]->Resize(XQs);
}
const float* Xdata = X.data<float>();
std::array<uint8_t*, k2b1bXBits> XQdata;
for (auto i = 0; i < k2b1bXBits; ++i) {
XQdata[i] = XQ[i]->mutable_data<uint8_t>();
}
for (auto n = 0; n < N; ++n) {
for (auto qc = 0; qc < QC; ++qc) {
// compute the block in X.
std::array<uint8_t, k2b1bXBits> p = {{0, 0}};
for (auto b = 0; b < 8; ++b) {
const auto c = qc * 8 + b;
if (c < C) {
float v = Xdata[qc * 8 + b + C * n];
if (v < offset) {
// zero'd already.
} else if (v < offset + inter_center_distance) {
p[0] |= 1 << b;
} else if (v < offset + 2 * inter_center_distance) {
p[1] |= 1 << b;
} else {
p[0] |= 1 << b;
p[1] |= 1 << b;
}
}
}
for (auto i = 0; i < k2b1bXBits; ++i) {
XQdata[i][qc + QC * n] = p[i];
}
}
}
}
void qconv(const ConvArgs& args,
const TensorCPU& X,
const TensorCPU& W,
const TensorCPU* b,
TensorCPU* Y) {
const auto N = X.dim32(0);
const auto IH = X.dim32(1);
const auto IW = X.dim32(2);
const auto KH = W.dim32(1);
const auto KW = W.dim32(2);
const auto KC = W.dim32(3);
Y->Resize(X.dim32(0),
(X.dim32(1) - KH + args.pad_t + args.pad_b) / args.stride_h + 1,
(X.dim32(2) - KW + args.pad_l + args.pad_r) / args.stride_w + 1,
W.dim32(0));
const auto OH = Y->dim32(1);
const auto OW = Y->dim32(2);
const auto OC = Y->dim32(3);
CAFFE_ENFORCE_EQ(W.dim32(3), X.dim32(3));
const auto* Xdata = X.data<uint8_t>();
const auto* Wdata = W.data<uint8_t>();
auto* Ydata = Y->mutable_data<float>();
for (size_t n = 0; n < N; ++n) {
for (size_t oh = 0; oh < OH; ++oh) {
for (size_t ow = 0; ow < OW; ++ow) {
for (size_t oc = 0; oc < OC; ++oc) {
float acc = 0.0;
for (size_t kh = 0; kh < KH; ++kh) {
const int32_t ih = (int32_t)kh + (int32_t)args.stride_h * oh - (int32_t)args.pad_t;
for (size_t kw = 0; kw < KW; ++kw) {
const int32_t iw = (int32_t)kw + (int32_t)args.stride_w * ow - (int32_t)args.pad_l;
for (size_t kc = 0; kc < KC; ++kc) {
const uint8_t w = Wdata[kc + KC * kw + KC * KW * kh + KC * KW * KH * oc];
// Use unsigned integer math to avoid multiple comparisons (>= H, < 0).
if ((size_t)ih >= (size_t)IH || (size_t)iw >= (size_t)IW) {
acc += __builtin_popcount(0 ^ w);
} else {
const uint8_t x =
Xdata[kc + KC * (size_t)iw + KC * IW * (size_t)ih + n * KC * IW * IH];
const uint8_t w = Wdata[kc + KC * kw + KC * KW * kh + KC * KW * KH * oc];
acc += __builtin_popcount(x ^ w);
}
}
}
}
Ydata[oc + OC * ow + OC * OW * oh + n * OC * OW * OH] =
KW * KH * KC * 8 - 2 * acc + (b ? b->data<float>()[oc] : 0.0);
;
}
}
}
}
}
void qpad_zero(const ConvArgs& args, const TensorCPU& X, TensorCPU* Y) {
CAFFE_ENFORCE_EQ(args.stride_h, 1);
CAFFE_ENFORCE_EQ(args.stride_w, 1);
const auto* Xdata = X.data<uint8_t>();
Y->Resize(X.dim32(0),
X.dim32(1) + args.pad_t + args.pad_b,
X.dim32(2) + args.pad_l + args.pad_r,
X.dim32(3));
auto* Ydata = Y->mutable_data<uint8_t>();
::memset(Ydata, 0, Y->nbytes());
const auto C = Y->dim32(3);
const auto XrowSize = X.dim32(3) * X.dim32(2);
const auto YrowSize = Y->dim32(3) * Y->dim32(2);
math::CopyMatrix<CPUContext>(1,
X.dim32(1),
XrowSize,
Xdata,
XrowSize,
Ydata + C * args.pad_l + YrowSize * args.pad_t,
YrowSize,
nullptr);
}
void signQuantize(const TensorCPU& X, TensorCPU* XQ) {
CAFFE_ENFORCE_GT(X.ndim(), 1);
const auto N = X.size_to_dim(X.ndim() - 1);
auto C = X.size() / N;
const auto QC = divRoundUp(C, 8);
auto XQs = X.sizes().vec();
XQs[X.ndim() - 1] = QC;
XQ->Resize(XQs);
const float* Xdata = X.data<float>();
uint8_t* XQdata = XQ->mutable_data<uint8_t>();
for (auto n = 0; n < N; ++n) {
for (auto qc = 0; qc < QC; ++qc) {
// compute the block in X.
uint8_t p = 0;
for (auto b = 0; b < 8; ++b) {
const auto c = qc * 8 + b;
if (c < C) {
p |= (Xdata[c + C * n] > 0) << b;
}
}
XQdata[qc + QC * n] = p;
}
}
}
void filterNormalization11(const TensorCPU& WQ, TensorCPU* WQN) {
const auto F = WQ.dim32(0);
// In our NEON kernel we read up to TileSize, so align allocation to TileSize elements.
WQN->Resize(divRoundUp(F, kGEMMTileSize) * kGEMMTileSize);
const auto WQs = WQ.size() / F;
const auto WQbits = 8 * WQs;
const auto* WQdata = WQ.data<uint8_t>();
auto* WQNdata = WQN->mutable_data<float>();
for (auto f = 0; f < F; ++f) {
int32_t bitSum = 0;
for (auto j = 0; j < WQs; ++j) {
bitSum += __builtin_popcount(WQdata[f * WQs + j]);
}
TORCH_DCHECK_LE(bitSum, WQbits);
WQNdata[f] = 2 * bitSum - WQbits;
}
}
void filterNormalizationL1(const TensorCPU& W, TensorCPU* WL1) {
const auto F = W.dim32(0);
WL1->Resize(F);
const auto Ws = W.size() / F;
const auto* Wdata = W.data<float>();
auto* WL1data = WL1->mutable_data<float>();
for (auto f = 0; f < F; ++f) {
double l1sum = 0.0;
for (auto j = 0; j < Ws; ++j) {
l1sum += std::abs(Wdata[f * Ws + j]);
}
WL1data[f] = l1sum / Ws;
}
}
void qim2col(const ConvArgs& args, const TensorCPU& XQ, const TensorCPU& WQ, TensorCPU* XQcol) {
// TODO: pass pre-resized output?
// TODO: handle strides?
CAFFE_ENFORCE_EQ(XQ.dim32(3), WQ.dim32(3));
const size_t N = XQ.dim32(0);
const size_t IH = XQ.dim32(1);
const size_t IW = XQ.dim32(2);
const size_t KH = WQ.dim32(1);
const size_t KW = WQ.dim32(2);
const size_t KC = WQ.dim32(3);
XQcol->Resize(XQ.dim32(0),
(XQ.dim32(1) - KH + args.pad_t + args.pad_b) / args.stride_h + 1,
(XQ.dim32(2) - KW + args.pad_l + args.pad_r) / args.stride_w + 1,
KH * KW * KC);
if (args.pad_l == 0 && args.pad_r == 0 && args.pad_b == 0 && args.pad_t == 0 &&
args.stride_h == 1 && args.stride_w == 1 && KH == 1 && KW == 1) {
CAFFE_ENFORCE_EQ(XQ.size(), XQcol->size());
XQcol->ShareExternalPointer(const_cast<uint8_t*>(XQ.data<uint8_t>()), XQ.size());
return;
}
const size_t OH = XQcol->dim32(1);
const size_t OW = XQcol->dim32(2);
const uint8_t* XQdata = XQ.data<uint8_t>();
uint8_t* XQcoldata = XQcol->mutable_data<uint8_t>();
for (size_t n = 0; n < N; ++n) {
for (size_t oh = 0; oh < OH; ++oh) {
int32_t h_pad = (int32_t)(args.stride_h * oh) - (int32_t)args.pad_t;
for (size_t ow = 0; ow < OW; ++ow) {
int32_t w_pad = (int32_t)(args.stride_w * ow) - (int32_t)args.pad_l;
for (size_t kh = 0; kh < KH; ++kh) {
int32_t ih = (int32_t)kh + h_pad;
if ((size_t)ih < (size_t)IH && (size_t)w_pad < (size_t)IW &&
(size_t)((int32_t)w_pad + (int32_t)KW) < (size_t)IW) {
// We can do a larger memcpy, of size KW * KC
size_t off = kh * KW * KC + ow * KH * KW * KC + oh * KH * KW * KC * OW +
n * KH * KW * KC * OW * OH;
std::memcpy(&XQcoldata[off],
&XQdata[((int32_t)w_pad) * KC + ih * IW * KC + n * IW * KC * IH],
KW * KC);
} else {
for (size_t kw = 0; kw < KW; ++kw) {
int32_t iw = (int32_t)kw + w_pad;
// Use unsigned integer math to avoid multiple comparisons (>= H, < 0).
size_t off = kw * KC + kh * KW * KC + ow * KH * KW * KC + oh * KH * KW * KC * OW +
n * KH * KW * KC * OW * OH;
if ((size_t)ih < (size_t)IH && (size_t)iw < (size_t)IW) {
std::memcpy(
&XQcoldata[off], &XQdata[iw * KC + ih * IW * KC + n * KC * IW * IH], KC);
} else {
// This should be simply padded with zero.
std::memset(&XQcoldata[off], 0, KC);
}
}
}
}
}
}
}
}
std::unique_ptr<QConvState> create2b1bConvState(Workspace* ws,
const TensorCPU& W,
const TensorCPU* b) {
auto state = std::make_unique<QConvState>();
state->XQs.resize(k2b1bXBits);
state->YQs.resize(k2b1bXBits);
for (auto i = 0; i < k2b1bXBits; ++i) {
state->XQs[i] = std::make_unique<Tensor>(CPU);
state->YQs[i] = std::make_unique<Tensor>(CPU);
}
state->WQ = std::make_unique<Tensor>(CPU);
state->WQN = std::make_unique<Tensor>(CPU);
state->WQL1Norm = std::make_unique<Tensor>(CPU);
state->scratch = std::make_unique<Tensor>(CPU);
state->scratchColBuffer = std::make_unique<Tensor>(CPU);
signQuantize(W, state->WQ.get());
filterNormalization11(*(state->WQ), state->WQN.get());
filterNormalizationL1(W, state->WQL1Norm.get());
// TODO: incorporate center distance normalization.
// Since inputs to convs are [0, 1, 2, 3], instead of [0, x, 2 * x, ...],
// we can just uniformly rescale the outputs by x, i.e.,
// for (auto i = 0; i < r->WQL1Norm.size(); ++i) {
// r->WQL1Norm.mutable_data<float>()[i] *= center_distance;
// }
state->parallelFor = [ws](size_t range, std::function<void(size_t)> f) {
#ifdef C10_MOBILE
ws->GetThreadPool()->run([&](int, size_t v) { f(v); }, range);
#else
for (size_t v = 0; v < range; ++v) {
f(v);
}
#endif
};
if (b) {
state->bias = std::make_unique<Tensor>(*b, CPU);
}
return state;
}
void run2b1bConvGeneric(QConvState* state, const ConvArgs& args, const TensorCPU& X, TensorCPU* Y) {
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
if (run2b1bConvNeon(state, args, X, Y)) {
return;
}
#endif
uniformQuantize2b1b(X, state->XQs, 0.5, 1.0);
for (auto i = 0; i < k2b1bXBits; ++i) {
qconv(args, *(state->XQs[i]), *(state->WQ), nullptr, state->YQs[i].get());
}
Y->ResizeLike(*(state->YQs[0]));
const auto F = state->WQ->dim(0);
const auto N = Y->size() / F;
run2b1bUnification(state,
N,
F,
state->WQN->data<float>(),
state->YQs[0]->data<float>(),
state->YQs[1]->data<float>(),
F,
Y->mutable_data<float>(),
F,
state->bias ? state->bias->data<float>() : nullptr);
}
void run2b1bUnification(QConvState* state,
size_t N,
size_t C,
const float* WQNVdata,
const float* YQs0Vdata,
const float* YQs1Vdata,
size_t YQstride,
float* Ydata,
size_t Ystride,
const float* bias) {
ConstEigenVectorArrayMap<float> WQNV(WQNVdata, C);
for (size_t j = 0; j < N; ++j) {
ConstEigenVectorArrayMap<float> YQs0V(YQs0Vdata + YQstride * j, C);
ConstEigenVectorArrayMap<float> YQs1V(YQs1Vdata + YQstride * j, C);
EigenVectorArrayMap<float> YNV(Ydata + Ystride * j, C);
if (bias) {
ConstEigenVectorArrayMap<float> BV(bias, C);
YNV = (std::pow<float>(2, k2b1bXBits) - 1) / 2 * WQNV + std::pow<float>(2, -1) * YQs0V +
std::pow<float>(2, 0) * YQs1V + BV;
} else {
YNV = (std::pow<float>(2, k2b1bXBits) - 1) / 2 * WQNV + std::pow<float>(2, -1) * YQs0V +
std::pow<float>(2, 0) * YQs1V;
}
}
}
class QConvOp final : public ConvPoolOpBase<CPUContext> {
public:
QConvOp(const OperatorDef& operator_def, Workspace* ws)
: ConvPoolOpBase<CPUContext>(operator_def, ws), ws_(ws) {
OPERATOR_NEEDS_FEATURE(this->order_ == StorageOrder::NHWC, "QConvOp only supports NHWC order");
OPERATOR_NEEDS_FEATURE(this->dilation_h() == 1, "");
OPERATOR_NEEDS_FEATURE(this->dilation_w() == 1, "");
OPERATOR_NEEDS_FEATURE(this->group_ == 1, "");
}
bool RunOnDeviceWithOrderNHWC() override {
auto& X = Input(0);
auto& filter = Input(1);
const auto* bias = InputSize() == 3 ? &Input(2) : nullptr;
auto* Y = Output(0);
// TODO: Support multiple quantization methods instead of assuming 2b1b.
if (!state_) {
state_ = create2b1bConvState(ws_, filter, bias);
}
ConvArgs args;
args.pad_l = this->pad_l();
args.pad_t = this->pad_t();
args.pad_b = this->pad_b();
args.pad_r = this->pad_r();
args.stride_h = this->stride_h();
args.stride_w = this->stride_w();
run2b1bConvGeneric(state_.get(), args, X, Y);
return true;
}
private:
std::unique_ptr<QConvState> state_;
Workspace* ws_;
};
REGISTER_CPU_OPERATOR(QConv, QConvOp);
} // namespace caffe2
|