1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
|
#include "ulp_neon.h"
#include "caffe2/core/timer.h"
#include "caffe2/utils/eigen_utils.h"
#include "caffe2/utils/math.h"
namespace caffe2 {
// TODO: tune this with cache size detection code. Changing to 32 helps on some
// devices (Snapdragon 820).
constexpr size_t kL1CacheSizeBytes = 16 * 1024;
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
// Applies 2-bit uniform quantization to the floating point data at Xdata,
// storing QC bytes into XQdata (i.e. reading 8 * QC floats from Xdata).
// Requires QC to be a multiple of 8.
inline void quantize2bNeon(size_t QC,
const float* __restrict__ Xdata,
float offset,
float inter_center_distance,
std::array<uint8_t*, k2b1bXBits> XQdata) {
TORCH_DCHECK_EQ(QC % 8, 0);
const auto offset_plus_2_inter_center_distance = vdupq_n_f32(offset + 2 * inter_center_distance);
const auto offset_plus_inter_center_distance = vdupq_n_f32(offset + inter_center_distance);
const auto offset_ = vdupq_n_f32(offset);
const uint8x8_t shifts = {1 << 0, 1 << 1, 1 << 2, 1 << 3, 1 << 4, 1 << 5, 1 << 6, 1 << 7};
for (size_t qc = 0; qc < QC; qc += 8) {
std::array<std::array<uint8x8_t, 8>, k2b1bXBits> ps;
for (auto i = 0; i < k2b1bXBits; ++i) {
for (auto j = 0; j < 8; ++j) {
ps[i][j] = vdup_n_u8(0);
}
}
for (auto j = 0; j < 8; ++j) {
const auto x0 = vld1q_f32(&Xdata[qc * 8 + j * 8 + 0]);
const auto x1 = vld1q_f32(&Xdata[qc * 8 + j * 8 + 4]);
// logic.
// if (v >= offset + inter_center_distance) {
// p[1] |= 1 << b;
// } else {
// p[1] |= 0 << b;
// }
// if ((v >= offset && v < offset + inter_center_distance) ||
// (v >= offset * 2 * inter_center_distance)) {
// p[0] |= 1 << b;
// } else {
// p[0] |= 0 << b;
// }
auto join = [](uint32x4_t a, uint32x4_t b) -> uint8x8_t {
return vmovn_u16(vcombine_u16(vmovn_u32(a), vmovn_u32(b)));
};
const auto x_geq_offset_plus_2_inter_center_distance =
join(vcgeq_s32(vreinterpretq_s32_f32(x0),
vreinterpretq_s32_f32(offset_plus_2_inter_center_distance)),
vcgeq_s32(vreinterpretq_s32_f32(x1),
vreinterpretq_s32_f32(offset_plus_2_inter_center_distance)));
const auto x_ge_offset =
join(vcgeq_s32(vreinterpretq_s32_f32(x0), vreinterpretq_s32_f32(offset_)),
vcgeq_s32(vreinterpretq_s32_f32(x1), vreinterpretq_s32_f32(offset_)));
const auto x_lt_offset_plus_inter_center_distance =
join(vcltq_s32(vreinterpretq_s32_f32(x0),
vreinterpretq_s32_f32(offset_plus_inter_center_distance)),
vcltq_s32(vreinterpretq_s32_f32(x1),
vreinterpretq_s32_f32(offset_plus_inter_center_distance)));
const auto p1_mask = vmvn_u8(x_lt_offset_plus_inter_center_distance);
const auto p0_mask = vorr_u8(vand_u8(x_ge_offset, x_lt_offset_plus_inter_center_distance),
x_geq_offset_plus_2_inter_center_distance);
ps[0][j] = vand_u8(shifts, p0_mask);
ps[1][j] = vand_u8(shifts, p1_mask);
}
for (auto i = 0; i < 2; ++i) {
const auto p01 = vpadd_u8(ps[i][0], ps[i][1]);
const auto p23 = vpadd_u8(ps[i][2], ps[i][3]);
const auto p45 = vpadd_u8(ps[i][4], ps[i][5]);
const auto p67 = vpadd_u8(ps[i][6], ps[i][7]);
const auto p0123 = vpadd_u8(p01, p23);
const auto p4567 = vpadd_u8(p45, p67);
vst1_u8(XQdata[i] + qc, vpadd_u8(p0123, p4567));
}
}
}
void uniformQuantize2b1bNeon(QConvState* state,
const TensorCPU& X,
const std::vector<std::unique_ptr<TensorCPU>>& XQ,
float offset,
float inter_center_distance) {
CAFFE_ENFORCE_GT(X.ndim(), 1);
const size_t C = X.dim32(X.ndim() - 1);
const size_t N = X.size() / C;
const size_t QC = divRoundUp(C, 8);
auto XQs = X.sizes().vec();
XQs[X.ndim() - 1] = QC;
CAFFE_ENFORCE_EQ(XQ.size(), k2b1bXBits);
for (auto i = 0; i < k2b1bXBits; ++i) {
XQ[i]->Resize(XQs);
}
const float* Xdata = X.data<float>();
std::array<uint8_t*, k2b1bXBits> XQdata;
for (size_t i = 0; i < k2b1bXBits; ++i) {
XQdata[i] = XQ[i]->mutable_data<uint8_t>();
}
CAFFE_ENFORCE_GT(offset, 0);
CAFFE_ENFORCE_GT(inter_center_distance, 0);
size_t QCUnroll = ((C / 8) / 8) * 8;
// Each worker loads an L1 cache sized block.
// We read/write B * K * 4 + 2 * B * (K / 8), so to fit inside C, we have
// B = 4 * C / 17 K.
// QCUnroll = 0;
const size_t rowsPerBlock =
std::max<size_t>(std::floor<size_t>(double(4 * kL1CacheSizeBytes) / double(17 * C)), 1);
state->parallelFor(divRoundUp(N, rowsPerBlock), [&](size_t nb) {
for (size_t n = nb * rowsPerBlock; n < std::min<size_t>(nb * rowsPerBlock + rowsPerBlock, N);
++n) {
std::array<uint8_t*, k2b1bXBits> XQoff = {{
XQdata[0] + 0 + QC * n, XQdata[1] + 0 + QC * n,
}};
quantize2bNeon(QCUnroll, &Xdata[0 + C * n], offset, inter_center_distance, XQoff);
for (size_t qc = QCUnroll; qc < QC; ++qc) {
// compute the block in X.
std::array<uint8_t, k2b1bXBits> p = {{0, 0}};
for (size_t b = 0; b < 8; ++b) {
const size_t c = qc * 8 + b;
if (c < C) {
float v = Xdata[c + C * n];
if (v < offset) {
// zero'd already.
} else if (v < offset + inter_center_distance) {
p[0] |= 1 << b;
} else if (v < offset + 2 * inter_center_distance) {
p[1] |= 1 << b;
} else {
p[0] |= 1 << b;
p[1] |= 1 << b;
}
}
}
for (auto i = 0; i < k2b1bXBits; ++i) {
XQdata[i][qc + QC * n] = p[i];
}
}
}
});
}
template <size_t TileSize, size_t TileDepthBytes>
void uniformQuantize2b1bNeonPacked(QConvState* state,
const TensorCPU& X,
const std::vector<std::unique_ptr<TensorCPU>>& XQ,
float offset,
float inter_center_distance) {
const size_t M = X.size_to_dim(3);
const size_t K = X.size() / M;
const size_t QK = divRoundUp(K, 8);
const size_t numTiles = divRoundUp(M, TileSize);
const size_t numTilesDepth = divRoundUp(QK, TileDepthBytes);
for (size_t i = 0; i < k2b1bXBits; ++i) {
XQ[i]->Resize(numTiles, numTilesDepth, TileSize, TileDepthBytes);
}
const float* Xdata = X.data<float>();
std::array<uint8_t*, k2b1bXBits> XQdata;
for (auto i = 0; i < k2b1bXBits; ++i) {
XQdata[i] = XQ[i]->mutable_data<uint8_t>();
}
CAFFE_ENFORCE_GT(offset, 0);
CAFFE_ENFORCE_GT(inter_center_distance, 0);
// Each worker loads an L1 cache sized block.
// We read/write B * K * TileSize * 4 + 2 * B * TileSize * (K / 8), so to fit inside C, we have
// B = 4 * C / (17 * K * TileSize).
const size_t tilesPerBlock = std::max<size_t>(
std::floor<size_t>(double(4 * kL1CacheSizeBytes) / double(17 * K * TileSize)), 1);
state->parallelFor(divRoundUp(numTiles, tilesPerBlock), [&](size_t nb) {
for (size_t i = nb * tilesPerBlock;
i < std::min<size_t>(nb * tilesPerBlock + tilesPerBlock, numTiles);
++i) {
for (size_t j = 0; j < numTilesDepth; ++j) {
if (i != numTiles - 1 && j != numTilesDepth - 1) {
// we have a full tile. Just memcpy.
for (auto ii = 0; ii < TileSize; ++ii) {
size_t m = i * TileSize + ii;
size_t k = j * TileDepthBytes * 8;
std::array<uint8_t*, k2b1bXBits> XQoff = {
{XQdata[0] + TileDepthBytes * ii + TileDepthBytes * TileSize * j +
TileSize * TileDepthBytes * numTilesDepth * i,
XQdata[1] + TileDepthBytes * ii + TileDepthBytes * TileSize * j +
TileSize * TileDepthBytes * numTilesDepth * i}};
quantize2bNeon(TileDepthBytes, &Xdata[m * K + k], offset, inter_center_distance, XQoff);
}
} else {
for (size_t ii = 0; ii < TileSize; ++ii) {
size_t m = i * TileSize + ii;
size_t k = j * TileDepthBytes * 8;
std::array<uint8_t*, k2b1bXBits> XQoff = {
{XQdata[0] + TileDepthBytes * ii + TileDepthBytes * TileSize * j +
TileSize * TileDepthBytes * numTilesDepth * i,
XQdata[1] + TileDepthBytes * ii + TileDepthBytes * TileSize * j +
TileSize * TileDepthBytes * numTilesDepth * i}};
if (m < M && k + TileDepthBytes * 8 <= K) {
// We can just read the stripe directly.
quantize2bNeon(
TileDepthBytes, &Xdata[m * K + k], offset, inter_center_distance, XQoff);
} else {
// We need to pad the stripe to the full amount read by
// quantize2bNeon.
std::array<float, 8 * TileDepthBytes> Xpad = {{0}};
if (m < M) {
std::copy(&Xdata[m * K + k], &Xdata[m * K + K], Xpad.begin());
}
quantize2bNeon(TileDepthBytes, Xpad.data(), offset, inter_center_distance, XQoff);
}
}
}
}
}
});
}
// Packs a matrix (of size MxK) into a tiled array of size
// (M/TileSize)x(K/TileDepthBytes)xTileSizexTileDepthBytes.
template <size_t TileSize, size_t TileDepthBytes>
void qpack_tiles(QConvState* state, const TensorCPU& X, size_t axis, TensorCPU* XP) {
const size_t M = X.size_to_dim(axis);
const size_t QK = X.size() / M;
const size_t numTiles = divRoundUp(M, TileSize);
const size_t numTilesDepth = divRoundUp(QK, TileDepthBytes);
XP->Resize(numTiles, numTilesDepth, TileSize, TileDepthBytes);
const auto* __restrict__ Xdata = X.data<uint8_t>();
auto* __restrict__ XPdata = XP->mutable_data<uint8_t>();
// Load L1 sized tiles per thread.
// We read/write 2 * B * QK * TileSize bytes, so
// B = C / (2 * QK * TileSize)
const size_t tilesPerBlock = std::max<size_t>(
std::floor<size_t>(double(kL1CacheSizeBytes) / double(2 * TileSize * QK)), 1);
state->parallelFor(divRoundUp(numTiles, tilesPerBlock), [&](size_t nb) {
for (size_t i = nb * tilesPerBlock;
i < std::min<size_t>(nb * tilesPerBlock + tilesPerBlock, numTiles);
++i) {
for (size_t j = 0; j < numTilesDepth; ++j) {
if (i != numTiles - 1 && j != numTilesDepth - 1) {
// we have a full tile. Just memcpy.
for (auto ii = 0; ii < TileSize; ++ii) {
auto m = i * TileSize + ii;
auto qk = j * TileDepthBytes;
std::memcpy(&XPdata[TileDepthBytes * ii + TileDepthBytes * TileSize * j +
TileSize * TileDepthBytes * numTilesDepth * i],
&Xdata[m * QK + qk],
TileDepthBytes);
}
} else {
for (size_t ii = 0; ii < TileSize; ++ii) {
for (size_t jj = 0; jj < TileDepthBytes; ++jj) {
size_t m = i * TileSize + ii;
size_t qk = j * TileDepthBytes + jj;
uint8_t pval = 0;
if (m < M && qk < QK) {
// get value from X
pval = Xdata[m * QK + qk];
}
XPdata[jj + TileDepthBytes * ii + TileDepthBytes * TileSize * j +
TileSize * TileDepthBytes * numTilesDepth * i] = pval;
}
}
}
}
}
});
}
// Computes the kUnrollM x kUnrollM tile of a GEMM by multiplying two packed
// slices of size (kUnrolLMxK). These tiles are constructed by the qpack_tiles
// function, which packs an input array of size [M][K] into an
// [M/TileSize][K/TileDepthBytes][TileSize][TileDepthBytes], which ensures all
// the array accesses in this function is contiguous.
template <size_t kUnrollM, size_t kUnrollN, size_t TileDepthBytes, typename F>
void qgess_packed(const uint8_t* __restrict__ Ablock,
const uint8_t* __restrict__ Bblock,
float* __restrict__ Cblock,
const size_t Cstride,
const size_t QK,
const size_t Nstart,
F&& f) {
static_assert(kUnrollN % 8 == 0, "");
static_assert(TileDepthBytes == 16, "");
TORCH_DCHECK_EQ(QK % 16, 0);
uint16x8_t acc[kUnrollM][kUnrollN / 8];
for (size_t mm = 0; mm < kUnrollM; ++mm) {
for (size_t nn = 0; nn < kUnrollN / 8; ++nn) {
acc[mm][nn] = vdupq_n_u16(0);
}
}
size_t qk = 0;
const size_t QK16Unroll = (QK / 16) * 16;
for (; qk < QK16Unroll; qk += 16) {
uint8x16_t Areg[kUnrollM];
for (size_t mm = 0; mm < kUnrollM; ++mm) {
Areg[mm] = vld1q_u8(Ablock);
Ablock += 16;
}
for (size_t nn = 0; nn < kUnrollN / 8; ++nn) {
uint8x16_t Breg[8];
for (size_t nnn = 0; nnn < 8; ++nnn) {
Breg[nnn] = vld1q_u8(Bblock);
Bblock += 16;
}
for (size_t mm = 0; mm < kUnrollM; ++mm) {
uint8x16_t cnts[8];
for (size_t nnn = 0; nnn < 8; ++nnn) {
cnts[nnn] = vcntq_u8(veorq_u8(Breg[nnn], Areg[mm]));
}
uint8x8_t ps[8];
for (size_t nnn = 0; nnn < 8; ++nnn) {
ps[nnn] = vadd_u8(vget_low_u8(cnts[nnn]), vget_high_u8(cnts[nnn]));
}
uint8x8_t pss[4];
for (size_t nnn = 0; nnn < 4; ++nnn) {
pss[nnn] = vpadd_u8(ps[2 * nnn], ps[2 * nnn + 1]);
}
uint8x8_t psss[2];
for (size_t nnn = 0; nnn < 2; ++nnn) {
psss[nnn] = vpadd_u8(pss[2 * nnn], pss[2 * nnn + 1]);
}
uint8x16_t out = vcombine_u8(psss[0], psss[1]);
acc[mm][nn] = vpadalq_u8(acc[mm][nn], out);
}
}
}
for (size_t mm = 0; mm < kUnrollM; ++mm) {
auto* Crow = Cblock + mm * Cstride;
for (size_t nn = 0; nn < kUnrollN / 8; ++nn) {
const int32x4_t K_ = vdupq_n_s32(QK * 8);
const int16x4_t two = vdup_n_s16(2);
const int16x4_t acc0123_l = vreinterpret_s16_u16(vget_low_u16(acc[mm][nn]));
const int16x4_t acc0123_h = vreinterpret_s16_u16(vget_high_u16(acc[mm][nn]));
const int32x4_t K_minus_2_acc0123_l = vmlsl_s16(K_, two, acc0123_l);
const int32x4_t K_minus_2_acc0123_h = vmlsl_s16(K_, two, acc0123_h);
f(Crow + nn * 8 + 0, vcvtq_f32_s32(K_minus_2_acc0123_l), Nstart + nn * 8 + 0);
f(Crow + nn * 8 + 4, vcvtq_f32_s32(K_minus_2_acc0123_h), Nstart + nn * 8 + 4);
}
}
}
// Computes the (normal + transpose) matrix-matrix product of two -1/1 binary
// matrices, laid out in the standard format.
template <size_t TileSize, size_t TileDepthBytes, typename F>
inline void qgemm_nt_packed(
QConvState* state, const TensorCPU& A, const TensorCPU& B, TensorCPU* C, F&& f = F()) {
CAFFE_ENFORCE_EQ(A.ndim(), 4);
CAFFE_ENFORCE_EQ(B.ndim(), 4);
CAFFE_ENFORCE_EQ(A.dim(2), TileSize);
CAFFE_ENFORCE_EQ(B.dim(2), TileSize);
CAFFE_ENFORCE_EQ(A.dim(3), TileDepthBytes);
CAFFE_ENFORCE_EQ(B.dim(3), TileDepthBytes);
const size_t MT = A.dim(0);
const size_t NT = B.dim(0);
const size_t M = MT * TileSize;
const size_t N = NT * TileSize;
const size_t QKT = A.dim(1);
const size_t K = QKT * 8 * TileDepthBytes;
const size_t QK = K / 8;
CAFFE_ENFORCE_EQ(A.dim(1), B.dim(1));
C->Resize(M, N);
const auto* Adata = A.data<uint8_t>();
const auto* Bdata = B.data<uint8_t>();
auto* Cdata = C->mutable_data<float>();
// Assume TxT tile. Each input slice is of size T x (K/8) bytes, and the output
// is a tile of size T x T x sizeof(float) bytes. We want the sum of this to fit
// in L1 cache. This means for a block number of tiles B , we load B * T * K /
// 8 + B * T * K / 8 + B * B * T * T * sizeof(float).
// If cache size = C, we get
// B = 1/(32 * T) (sqrt(256 C + K^2) - K)
// taking floor (by integer division), gives the result.
// Assume 16KB L1 cache.
size_t tilesPerBlock =
std::floor((std::sqrt(256 * kL1CacheSizeBytes + K * K) - K) / (32 * TileSize));
if (tilesPerBlock < 1) {
tilesPerBlock = 1;
}
CAFFE_ENFORCE_LT(K, std::pow(2, 16));
CAFFE_ENFORCE_EQ(M % TileSize, 0);
CAFFE_ENFORCE_EQ(N % TileSize, 0);
const size_t MNumTiles = M / TileSize;
const size_t NNumTiles = N / TileSize;
const size_t MNumBlocks = divRoundUp(MNumTiles, tilesPerBlock);
const size_t NNumBlocks = divRoundUp(NNumTiles, tilesPerBlock);
state->parallelFor(MNumBlocks * NNumBlocks, [&](size_t mn) {
const size_t mBlockIdx = mn / NNumBlocks;
const size_t nBlockIdx = mn % NNumBlocks;
const size_t mTileStart = mBlockIdx * tilesPerBlock;
const size_t nTileStart = nBlockIdx * tilesPerBlock;
for (size_t mBlockTileIdx = 0;
mBlockTileIdx < tilesPerBlock && mBlockTileIdx + mTileStart < MNumTiles;
++mBlockTileIdx) {
const size_t mTileIdx = mBlockTileIdx + mTileStart;
for (size_t nBlockTileIdx = 0;
nBlockTileIdx < tilesPerBlock && nBlockTileIdx + nTileStart < NNumTiles;
++nBlockTileIdx) {
const size_t nTileIdx = nBlockTileIdx + nTileStart;
// A layout: [M/TileSize][QK / TileDepth][TileSize][TileDepth]
// C layout: [M/TileSize][TileSize][N/TileSize][TileSize]
const auto* Ablock = &Adata[mTileIdx * QK * TileSize];
const auto* Bblock = &Bdata[nTileIdx * QK * TileSize];
auto* Cblock = &Cdata[mTileIdx * TileSize * N + nTileIdx * TileSize];
const size_t Cstride = N;
qgess_packed<TileSize, TileSize, TileDepthBytes, F>(
Ablock, Bblock, Cblock, Cstride, QK, nTileIdx * TileSize, std::forward<F>(f));
}
}
});
}
void run2b1bConvIm2ColGEMM(QConvState* state,
const ConvArgs& args,
const TensorCPU& X,
TensorCPU* Y) {
// TODO: packing + quantization in same block.
const size_t KH = state->WQ->dim32(1);
const size_t KW = state->WQ->dim32(2);
const size_t OH = (X.dim32(1) - KH + args.pad_t + args.pad_b) / args.stride_h + 1;
const size_t OW = (X.dim32(2) - KW + args.pad_l + args.pad_r) / args.stride_w + 1;
const size_t OC = state->WQ->dim32(0);
const size_t QK = KH * KW * divRoundUp(X.dim32(3), 8);
Y->Resize(X.dim32(0), OH, OW, OC);
if (!state->WQPacked) {
state->WQPacked = std::make_unique<Tensor>(CPU);
qpack_tiles<kGEMMTileSize, kGEMMTileDepthBytes>(state, *(state->WQ), 1, state->WQPacked.get());
CAFFE_ENFORCE_EQ(state->WQPacked->dim32(0), divRoundUp(OC, kGEMMTileSize));
CAFFE_ENFORCE_EQ(state->WQPacked->dim32(1), divRoundUp(QK, kGEMMTileDepthBytes));
CAFFE_ENFORCE_EQ(state->WQPacked->dim32(2), kGEMMTileSize);
CAFFE_ENFORCE_EQ(state->WQPacked->dim32(3), kGEMMTileDepthBytes);
// We can fuse the bias addition into the filter normalization. We can
// replace the bias + 3/2 normalization factor by replacing normalization
// with (2/3 bias + normalization), and setting bias to zero.
if (state->bias) {
for (size_t i = 0; i < state->bias->size(); ++i) {
state->WQN->mutable_data<float>()[i] += 2.0f / 3 * state->bias->data<float>()[i];
}
}
state->bias.reset();
// If we have to pad when we pack our weight tiles, then we need to adjust
// the normalization factor by the number of zeros that we added.
const size_t QKPadding = divRoundUp(QK, kGEMMTileDepthBytes) * kGEMMTileDepthBytes - QK;
if (QKPadding != 0) {
for (size_t i = 0; i < state->WQN->size(); ++i) {
state->WQN->mutable_data<float>()[i] -= QKPadding * 8;
}
}
}
CAFFE_ENFORCE(!state->bias.get());
// Since 1x1s are so common, we fuse the quantization + packing steps.
const bool is_1x1 = KH == 1 && KW == 1 && args.pad_l == 0 && args.pad_r == 0 && args.pad_b == 0 &&
args.pad_t == 0 && args.stride_h == 1 && args.stride_w == 1;
if (is_1x1) {
CAFFE_ENFORCE_EQ(OH, X.dim32(1));
CAFFE_ENFORCE_EQ(OW, X.dim32(2));
uniformQuantize2b1bNeonPacked<kGEMMTileSize, kGEMMTileDepthBytes>(
state, X, state->XQs, 0.5, 1.0);
} else {
uniformQuantize2b1bNeon(state, X, state->XQs, 0.5, 1.0);
}
TensorCPU* YQ0 = state->YQs[0].get();
if (state->WQ->dim32(0) % kGEMMTileSize == 0) {
// We can run inplace by operating on our Y vector, and then shrinking Y.
YQ0 = Y;
}
for (size_t i = 0; i < k2b1bXBits; ++i) {
const auto& XQ = *(state->XQs[i]);
if (!is_1x1) {
qim2col(args, XQ, *(state->WQ), state->scratchColBuffer.get());
qpack_tiles<kGEMMTileSize, kGEMMTileDepthBytes>(
state, *(state->scratchColBuffer), 3, state->scratch.get());
}
{
const auto* __restrict__ WQNdata = state->WQN->data<float>();
switch (i) {
case 0:
qgemm_nt_packed<kGEMMTileSize, kGEMMTileDepthBytes>(
state,
is_1x1 ? XQ : *(state->scratch),
*(state->WQPacked),
YQ0,
[WQNdata](float* __restrict__ acc, float32x4_t value, size_t channel) {
// acc[c] = 3/2 WQN[c] + 1/2 value[c];
const float32x4_t _32 = vdupq_n_f32(3.0f / 2);
const float32x4_t _12 = vdupq_n_f32(1.0f / 2);
const float32x4_t WQNc_32 = vmulq_f32(_32, vld1q_f32(WQNdata + channel));
const float32x4_t WQNc_32_value_12 = vmlaq_f32(WQNc_32, _12, value);
vst1q_f32(acc, WQNc_32_value_12);
});
break;
case 1:
qgemm_nt_packed<kGEMMTileSize, kGEMMTileDepthBytes>(
state,
is_1x1 ? XQ : *(state->scratch),
*(state->WQPacked),
YQ0,
[](float* __restrict__ acc, float32x4_t value, size_t channel) {
const float32x4_t curr = vld1q_f32(acc);
vst1q_f32(acc, vaddq_f32(curr, value));
});
break;
}
}
}
if (YQ0 != Y) {
// In this case, the stride does not match, so we need to copy the output
// data into the contiguous Y matrix.
const size_t F = state->WQ->dim(0);
const size_t N = Y->size() / F;
const size_t NP = YQ0->dim32(0);
const size_t FP = YQ0->dim32(1);
math::CopyMatrix<CPUContext>(
sizeof(float), N, F, YQ0->data<float>(), FP, Y->mutable_data<float>(), F, nullptr);
} else {
CAFFE_ENFORCE_EQ(Y->dim32(0), divRoundUp(X.dim32(0) * OH * OW, kGEMMTileSize) * kGEMMTileSize);
CAFFE_ENFORCE_EQ(Y->dim32(1), OC);
Y->ShrinkTo(X.dim32(0) * OH * OW);
Y->Reshape(std::vector<int64_t>{{int64_t(X.dim(0)), int64_t(OH), int64_t(OW), int64_t(OC)}});
}
}
bool run2b1bConvNeon(QConvState* state, const ConvArgs& args, const TensorCPU& X, TensorCPU* Y) {
// TODO: insert specialized cases (e.g. depthwise convolutions, the direct
// convolution.
CAFFE_ENFORCE_EQ(X.ndim(), 4);
run2b1bConvIm2ColGEMM(state, args, X, Y);
return true;
}
#endif
} // namespace caffe2
|