File: defs.cc

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (168 lines) | stat: -rw-r--r-- 6,217 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
// Copyright (c) Facebook Inc. and Microsoft Corporation.
// Licensed under the MIT license.

#include "./schema.h"

namespace ONNX_NAMESPACE {

// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables,bugprone-branch-clone)
ONNX_PYTORCH_OPERATOR_SET_SCHEMA(
    SparseLengthsSumFused8BitRowwise,
    1,
    OpSchema()
        .SetDoc("Mirror Caffe2 SparseLengthsSumFused8BitRowwise operator")
        .Input(0, "DATA", "data tensor", "T1")
        .Input(1, "INDICES", "indices tensor", "T2")
        .Input(2, "LENGTHS", "lengths tensor", "T2")
        .Output(0, "output", "Output tensor", "T2")
        .TypeConstraint(
            "T1",
            {"tensor(uint8)"},
            "Constrain input data to uint8 tensors.")
        .TypeConstraint(
            "T2",
            {"tensor(int8)",
             "tensor(int16)",
             "tensor(int32)",
             "tensor(int64)",
             "tensor(uint8)",
             "tensor(uint16)",
             "tensor(uint32)",
             "tensor(uint64)"},
            "Constrain index and length to integral tensors."));

// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables,bugprone-branch-clone)
ONNX_PYTORCH_OPERATOR_SET_SCHEMA(
    SparseLengthsSum,
    1,
    OpSchema()
        .SetDoc("Mirror Caffe2 SparseLengthsSum operator")
        .Input(0, "DATA", "data tensor", "T1")
        .Input(1, "INDICES", "indices tensor", "T2")
        .Input(2, "LENGTHS", "lengths tensor", "T2")
        .Output(0, "output", "Output tensor", "T1")
        .TypeConstraint(
            "T1",
            {"tensor(float16)", "tensor(float)", "tensor(double)"},
            "Constrain input and output types to float tensors.")
        .TypeConstraint(
            "T2",
            {"tensor(int8)",
             "tensor(int16)",
             "tensor(int32)",
             "tensor(int64)",
             "tensor(uint8)",
             "tensor(uint16)",
             "tensor(uint32)",
             "tensor(uint64)"},
            "Constrain index and length to integral tensors."));

// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables,bugprone-branch-clone)
ONNX_PYTORCH_OPERATOR_SET_SCHEMA(
    SparseLengthsWeightedSum,
    1,
    OpSchema()
        .SetDoc("Mirror Caffe2 SparseLengthsWeightedSum operator")
        .Input(0, "DATA", "data tensor", "T1")
        .Input(1, "WEIGHTS", "data tensor", "T1")
        .Input(2, "INDICES", "indices tensor", "T2")
        .Input(3, "LENGTHS", "lengths tensor", "T2")
        .Output(0, "output", "Output tensor", "T1")
        .TypeConstraint(
            "T1",
            {"tensor(float16)", "tensor(float)", "tensor(double)"},
            "Constrain input and output types to float tensors.")
        .TypeConstraint(
            "T2",
            {"tensor(int8)",
             "tensor(int16)",
             "tensor(int32)",
             "tensor(int64)",
             "tensor(uint8)",
             "tensor(uint16)",
             "tensor(uint32)",
             "tensor(uint64)"},
            "Constrain index and length to integral tensors."));

// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables,bugprone-branch-clone)
ONNX_PYTORCH_OPERATOR_SET_SCHEMA(
    BatchGather,
    1,
    OpSchema()
        .SetDoc("Mirror Caffe2 BatchGather operator")
        .Input(0, "DATA", "data tensor", "T1")
        .Input(1, "INDICES", "indices tensor", "T2")
        .Output(0, "output", "Output tensor", "T1")
        .TypeConstraint(
            "T1",
            {"tensor(float16)", "tensor(float)", "tensor(double)"},
            "Constrain input and output types to float tensors.")
        .TypeConstraint(
            "T2",
            {"tensor(int8)",
             "tensor(int16)",
             "tensor(int32)",
             "tensor(int64)",
             "tensor(uint8)",
             "tensor(uint16)",
             "tensor(uint32)",
             "tensor(uint64)"},
            "Constrain index and length to integral tensors."));

// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables,bugprone-branch-clone)
ONNX_PYTORCH_OPERATOR_SET_SCHEMA(
    DotProduct,
    1,
    OpSchema()
        .SetDoc("Mirror Caffe2 DotProduct operator")
        .Input(0, "X", "Input 1 tensor", "T")
        .Input(1, "Y", "Input 2 tensor", "T")
        .Output(0, "Z", "Output tensor", "T")
        .TypeConstraint(
            "T",
            {"tensor(float16)", "tensor(float)", "tensor(double)"},
            "Constrain input and output types to float tensors."));

// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables,bugprone-branch-clone)
ONNX_PYTORCH_OPERATOR_SET_SCHEMA(
    FCTransposed,
    1,
    OpSchema()
        .SetDoc("Mirror Caffe2 FCTransposed operator")
        .Input(0, "X", "Input tensor", "T")
        .Input(1, "W", "Weight tensor", "T")
        .Input(2, "B", "Bias tensor", "T")
        .Output(0, "Z", "Output tensor", "T")
        .TypeConstraint(
            "T",
            {"tensor(float16)", "tensor(float)", "tensor(double)"},
            "Constrain input and output types to float tensors."));

// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables,bugprone-branch-clone)
ONNX_PYTORCH_OPERATOR_SET_SCHEMA(
    BatchMatMul,
    1,
    OpSchema()
        .SetDoc("Mirror Caffe2 BatchMatMul operator")
        .Input(0, "X", "tensor of shape (dim0, dim1 ... M, K)", "T")
        .Input(1, "Y", "tensor of shape (dim0, dim2 ... K, N)", "T")
        .Output(0, "Z", "tensor of shape (dim0, dim1 ... M, N)", "T")
        .TypeConstraint(
            "T",
            {"tensor(float16)", "tensor(float)", "tensor(double)"},
            "Constrain input and output types to float tensors."));

// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables,bugprone-branch-clone)
ONNX_PYTORCH_OPERATOR_SET_SCHEMA(
    ExpandDims,
    1,
    OpSchema()
        .SetDoc("Mirror Caffe2 ExpandDims operator")
        .Input(0, "X", "Input tensor", "T")
        .Output(0, "Y", "Output tensor", "T")
        .TypeConstraint(
            "T",
            {"tensor(float16)", "tensor(float)", "tensor(double)"},
            "Constrain input and output types to float tensors."));

} // namespace ONNX_NAMESPACE