File: atan_op.cu

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (60 lines) | stat: -rw-r--r-- 1,340 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
#include "caffe2/operators/atan_op.h"

#include <algorithm>
#include <functional>

#include "caffe2/core/context_gpu.h"

namespace caffe2 {

namespace {

template <typename T>
__global__ void
AtanGradientCUDAKernel(const int N, const T* dY, const T* X, T* dX) {
  CUDA_1D_KERNEL_LOOP(i, N) {
#if __CUDA_ARCH__ >= 350
    dX[i] = __ldg(dY + i) / (T(1) + __ldg(X + i) * __ldg(X + i));
#else
    dX[i] = dY[i] / (T(1) + X[i] * X[i]);
#endif
  }
}

} // namespace

template <>
template <typename T>
bool AtanGradientFunctor<CUDAContext>::Forward(
    const std::vector<int>& X_dims,
    const std::vector<int>& /* dY_dims */,
    const T* X,
    const T* dY,
    T* dX,
    CUDAContext* context) const {
  const int size = std::accumulate(
      X_dims.cbegin(), X_dims.cend(), 1, std::multiplies<int>());
  AtanGradientCUDAKernel<T>
      <<<CAFFE_GET_BLOCKS(size),
         CAFFE_CUDA_NUM_THREADS,
         0,
         context->cuda_stream()>>>(size, dY, X, dX);
  C10_CUDA_KERNEL_LAUNCH_CHECK();

  return true;
}

REGISTER_CUDA_OPERATOR(
    Atan,
    UnaryElementwiseOp<
        TensorTypes<float>,
        CUDAContext,
        AtanFunctor<CUDAContext>>);
REGISTER_CUDA_OPERATOR(
    AtanGradient,
    BinaryElementwiseOp<
        TensorTypes<float>,
        CUDAContext,
        AtanGradientFunctor<CUDAContext>>);

} // namespace caffe2