File: batch_box_cox_op.h

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (97 lines) | stat: -rw-r--r-- 2,287 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
#ifndef CAFFE_OPERATORS_BATCH_BOX_COX_OPS_H_
#define CAFFE_OPERATORS_BATCH_BOX_COX_OPS_H_

#include "caffe2/core/context.h"
#include "caffe2/core/export_caffe2_op_to_c10.h"
#include "caffe2/core/logging.h"
#include "caffe2/core/operator.h"
#include "caffe2/utils/math.h"

C10_DECLARE_EXPORT_CAFFE2_OP_TO_C10(BatchBoxCox);

namespace caffe2 {

template <class Context>
class BatchBoxCoxOp final : public Operator<Context> {
 public:
  USE_OPERATOR_CONTEXT_FUNCTIONS;
  template <class... Args>
  explicit BatchBoxCoxOp(Args&&... args)
      : Operator<Context>(std::forward<Args>(args)...),
        min_block_size_(
            this->template GetSingleArgument<int>("min_block_size", 256)) {}

  bool RunOnDevice() override {
    return DispatchHelper<TensorTypes<float, double>>::call(this, Input(DATA));
  }

  template <typename T>
  bool DoRunWithType();

 protected:
  template <typename T>
  void BoxCoxNaive(
      int64_t N,
      int64_t D,
      const T* data_ptr,
      const T* lambda1_ptr,
      const T* lambda2_ptr,
      T k_eps,
      T* output_ptr);

#ifdef CAFFE2_USE_MKL
  template <typename T>
  void BoxCoxNonzeroLambda(
      int64_t D,
      const T* data_ptr,
      const T* lambda1,
      const T* lambda2,
      T k_eps,
      T* output_ptr);

  template <typename T>
  void BoxCoxZeroLambda(
      int64_t D,
      const T* data_ptr,
      const T* lambda2,
      T k_eps,
      T* output_ptr);

  template <typename T>
  void BoxCoxMixedLambda(
      const T* data_ptr,
      const vector<int>& nonzeros,
      const vector<int>& zeros,
      const T* lambda1,
      const T* lambda2,
      const T* lambda2_z,
      T k_eps,
      T* buffer,
      T* output_ptr);

  vector<int> nonzeros_, zeros_;

  // Buffers used by the MKL version are cached across calls.
  struct CachedBuffers {
    virtual ~CachedBuffers() {}
    int type_;
  };
  template <typename T>
  struct TypedCachedBuffers : public CachedBuffers {
    vector<T> lambda1_, lambda2_, lambda2_z_;
    vector<T> accumulator_;
  };
  template <typename T>
  TypedCachedBuffers<T>& GetBuffers();
  unique_ptr<CachedBuffers> buffers_;

#endif // CAFFE2_USE_MKL

  int min_block_size_;

  INPUT_TAGS(DATA, LAMBDA1, LAMBDA2);
};

} // namespace caffe2

#endif // CAFFE_OPERATORS_BATCH_BOX_COX_OPS_H_