File: batch_permutation_op.cu

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (115 lines) | stat: -rw-r--r-- 3,019 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
#include "caffe2/core/context_gpu.h"
#include "caffe2/operators/batch_permutation_op.h"

namespace caffe2 {

namespace {
template <bool forward>
__global__ void BatchPermutationKernel(
    int N,
    int K,
    const float* src,
    const int* indices,
    float* dst) {
  if (forward) {
    CUDA_1D_KERNEL_LOOP(index, N * K) {
      int k = index % K;
      int n = index / K;
      int idx = indices[n];
      CUDA_KERNEL_ASSERT(idx >= 0);
      CUDA_KERNEL_ASSERT(idx < N);
      dst[index] = src[idx * K + k];
    }
  } else {
    CUDA_1D_KERNEL_LOOP(index, N * K) {
      int k = index % K;
      int n = index / K;

      // NOTE: an alternative implementation if we want to align the index with
      // the output tensor (rather than the input tensor).
      // int idx = -1;
      // for (size_t i = 0; i < N; ++i) {
      //   if (indices[i] == n) {
      //     idx = i;
      //   }
      // }
      // CUDA_KERNEL_ASSERT(idx >= 0);
      // CUDA_KERNEL_ASSERT(idx < N);
      // dst[index] = src[idx * K + k];

      int idx = indices[n];
      CUDA_KERNEL_ASSERT(idx >= 0);
      CUDA_KERNEL_ASSERT(idx < N);
      dst[idx * K + k] = src[index];
    }
  }
}
} // namespace

template <>
bool BatchPermutationOp<float, CUDAContext>::RunOnDevice() {
  auto& X = Input(0);
  auto& indices = Input(1);

  CAFFE_ENFORCE(indices.dim() == 1, "indices must be 1-d");
  CAFFE_ENFORCE(
      X.dim32(0) == indices.dim32(0),
      "X.dim32(0) must be equal to indices.dim32(0)",
      "(",
      X.dim32(0),
      " vs. ",
      indices.dim32(0),
      ")");

  auto* Y = Output(0, X.sizes(), at::dtype<float>());

  if (X.dim32(0) > 0) {
    BatchPermutationKernel<true>
        <<<CAFFE_GET_BLOCKS(X.numel()),
           CAFFE_CUDA_NUM_THREADS,
           0,
           context_.cuda_stream()>>>(
            X.dim32(0),
            X.numel() / X.dim32(0),
            X.data<float>(),
            indices.data<int>(),
            Y->mutable_data<float>());
    C10_CUDA_KERNEL_LAUNCH_CHECK();
  }
  return true;
}

template <>
bool BatchPermutationGradientOp<float, CUDAContext>::RunOnDevice() {
  auto& indices = Input(0);
  auto& dY = Input(1);
  auto* dX = Output(0, dY.sizes(), at::dtype<float>());

  if (dY.dim32(0) > 0) {
    BatchPermutationKernel<false>
        <<<CAFFE_GET_BLOCKS(dY.numel()),
           CAFFE_CUDA_NUM_THREADS,
           0,
           context_.cuda_stream()>>>(
            dY.dim32(0),
            dY.numel() / dY.dim32(0),
            dY.data<float>(),
            indices.data<int>(),
            dX->mutable_data<float>());
    C10_CUDA_KERNEL_LAUNCH_CHECK();
  }
  return true;
}

REGISTER_CUDA_OPERATOR(
    BatchPermutation,
    BatchPermutationOp<float, CUDAContext>);
REGISTER_CUDA_OPERATOR(
    BatchPermutationGradient,
    BatchPermutationGradientOp<float, CUDAContext>);
} // namespace caffe2

using BatchPermutationOpFloatCUDA =
    caffe2::BatchPermutationOp<float, caffe2::CUDAContext>;

C10_EXPORT_CAFFE2_OP_TO_C10_CUDA(BatchPermutation, BatchPermutationOpFloatCUDA);