1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
|
// Copyright 2004-present Facebook. All Rights Reserved.
#ifndef CAFFE2_OPERATORS_BATCH_SPARSE_TO_DENSE_OP_H_
#define CAFFE2_OPERATORS_BATCH_SPARSE_TO_DENSE_OP_H_
#include "caffe2/core/context.h"
#include "caffe2/core/operator.h"
#include "caffe2/utils/math.h"
namespace caffe2 {
template <typename T, class Context>
class BatchSparseToDenseOp : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
USE_DISPATCH_HELPER;
template <class... Args>
explicit BatchSparseToDenseOp(Args&&... args)
: Operator<Context>(std::forward<Args>(args)...),
OP_SINGLE_ARG(int64_t, "dense_last_dim", dense_last_dim_, -1),
OP_SINGLE_ARG(T, "default_value", default_value_, static_cast<T>(0)) {}
bool RunOnDevice() override {
return DispatchHelper<TensorTypes<int32_t, int64_t>>::call(
this, Input(LENGTHS));
}
private:
template <typename TLen, typename TInd>
void FillInDenseValues(
const int64_t batch_size,
const int64_t indice_lengths,
const TLen* lengths_data,
const TInd* indices_data,
const T* values_data,
T* output_data,
Context* context);
template <typename TLen>
bool DoRunWithType() {
return DispatchHelper<
TensorTypes2<
int32_t,
int64_t,
GenericTensorImplementation>,
TLen>::call(this, Input(INDICES));
}
template <typename TLen, typename TInd>
bool DoRunWithType2() {
auto& lengths = Input(LENGTHS);
auto& indices = Input(INDICES);
auto& values = Input(VALUES);
CAFFE_ENFORCE_EQ(indices.numel(), values.numel());
CAFFE_ENFORCE_EQ(lengths.dim(), 1);
CAFFE_ENFORCE_EQ(indices.dim(), 1);
const TLen* lengths_data = lengths.template data<TLen>();
const TInd* indices_data = indices.template data<TInd>();
const T* values_data = values.template data<T>();
int64_t batch_size = lengths.numel();
vector<int64_t> output_shape = {batch_size};
if (InputSize() == 4) {
auto& shaper = Input(3);
CAFFE_ENFORCE_EQ(shaper.dim(), 2);
if (dense_last_dim_ == -1) {
dense_last_dim_ = shaper.size(1);
} else {
CAFFE_ENFORCE(
dense_last_dim_ == shaper.size(1),
"The last dim argument is not aligned with the shape input last dim");
}
} else {
CAFFE_ENFORCE(dense_last_dim_ >= 1, "The last dim of dense must be >= 1");
}
output_shape.push_back(dense_last_dim_);
auto* output = Output(0, output_shape, at::dtype<T>());
T* output_data = output->template mutable_data<T>();
math::Set(
output->numel(),
static_cast<T>(default_value_),
output_data,
&context_);
FillInDenseValues(
batch_size,
indices.numel(),
lengths_data,
indices_data,
values_data,
output_data,
&context_);
return true;
}
template <typename TLen>
bool DoRunWithOtherType2() {
CAFFE_THROW(
"BatchSparseToDense is not implemented on values of type ",
Input(VALUES).dtype().name(),
" with lengths of type ",
Input(LENGTHS).dtype().name(),
" and indices of type ",
Input(INDICES).dtype().name());
}
int64_t dense_last_dim_;
T default_value_;
INPUT_TAGS(LENGTHS, INDICES, VALUES);
// len_prefix_sum_ and len_prefix_tmp_ are buffers on the GPU. It is not used
// in the CPUContext implementation.
Tensor len_prefix_sum_{Context::GetDeviceType()};
Tensor len_prefix_tmp_{Context::GetDeviceType()};
};
template <typename T, class Context>
class BatchDenseToSparseOp : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
USE_DISPATCH_HELPER;
template <class... Args>
explicit BatchDenseToSparseOp(Args&&... args)
: Operator<Context>(std::forward<Args>(args)...) {}
bool RunOnDevice() {
return DispatchHelper<TensorTypes<int32_t, int64_t>>::call(
this, Input(LENGTHS));
}
private:
template <typename TLen, typename TInd>
void FillInSparseValues(
const int64_t batch_size,
const int64_t indice_lengths,
const TLen* lengths_data,
const TInd* indices_data,
const T* dense_data,
T* output_data,
Context* context);
template <typename TLen>
bool DoRunWithType() {
return DispatchHelper<
TensorTypes2<
int32_t,
int64_t,
GenericTensorImplementation>,
TLen>::call(this, Input(INDICES));
}
template <typename TLen, typename TInd>
bool DoRunWithType2() {
auto& lengths = Input(LENGTHS);
auto& indices = Input(INDICES);
auto& dense = Input(DENSE);
CAFFE_ENFORCE_EQ(lengths.dim(), 1);
CAFFE_ENFORCE_EQ(indices.dim(), 1);
CAFFE_ENFORCE_EQ(dense.dim(), 2);
const TLen* lengths_data = lengths.template data<TLen>();
const TInd* indices_data = indices.template data<TInd>();
const T* dense_data = dense.template data<T>();
int64_t batch_size = lengths.numel();
CAFFE_ENFORCE_EQ(batch_size, dense.size(0));
dense_last_dim_ = dense.size(1);
vector<int64_t> output_shape = indices.sizes().vec();
auto* output = Output(0, output_shape, at::dtype<T>());
T* output_data = output->template mutable_data<T>();
FillInSparseValues(
batch_size,
indices.numel(),
lengths_data,
indices_data,
dense_data,
output_data,
&context_);
return true;
}
template <typename TLen>
bool DoRunWithOtherType2() {
CAFFE_THROW(
"BatchDenseToSparse is not implemented on values of type ",
Input(DENSE).dtype().name(),
" with lengths of type ",
Input(LENGTHS).dtype().name(),
" and indices of type ",
Input(INDICES).dtype().name());
}
int64_t dense_last_dim_{};
INPUT_TAGS(LENGTHS, INDICES, DENSE);
// len_prefix_sum_ and len_prefix_tmp_ are buffers on the GPU. It is not used
// in the CPUContext implementation.
Tensor len_prefix_sum_{Context::GetDeviceType()};
Tensor len_prefix_tmp_{Context::GetDeviceType()};
};
} // namespace caffe2
#endif // CAFFE2_OPERATORS_BATCH_SPARSE_TO_DENSE_OP_H_
|