1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
|
#include "box_with_nms_limit_op.h"
#include "caffe2/utils/eigen_utils.h"
#include "generate_proposals_op_util_nms.h"
namespace caffe2 {
template <>
template <typename T>
bool BoxWithNMSLimitOp<CPUContext>::DoRunWithType() {
const auto& tscores = Input(0);
const auto& tboxes = Input(1);
const int box_dim = rotated_ ? 5 : 4;
// tscores: (num_boxes, num_classes), 0 for background
if (tscores.dim() == 4) {
CAFFE_ENFORCE_EQ(tscores.size(2), 1);
CAFFE_ENFORCE_EQ(tscores.size(3), 1);
} else {
CAFFE_ENFORCE_EQ(tscores.dim(), 2);
}
CAFFE_ENFORCE(tscores.template IsType<float>(), tscores.dtype().name());
// tboxes: (num_boxes, num_classes * box_dim)
if (tboxes.dim() == 4) {
CAFFE_ENFORCE_EQ(tboxes.size(2), 1);
CAFFE_ENFORCE_EQ(tboxes.size(3), 1);
} else {
CAFFE_ENFORCE_EQ(tboxes.dim(), 2);
}
CAFFE_ENFORCE(tboxes.template IsType<float>(), tboxes.dtype().name());
int N = tscores.size(0);
int num_classes = tscores.size(1);
CAFFE_ENFORCE_EQ(N, tboxes.size(0));
int num_boxes_classes = get_box_cls_index(num_classes - 1) + 1;
CAFFE_ENFORCE_EQ(num_boxes_classes * box_dim, tboxes.size(1));
// Default value for batch_size and batch_splits
int batch_size = 1;
vector<T> batch_splits_default(1, tscores.size(0));
const T* batch_splits_data = batch_splits_default.data();
if (InputSize() > 2) {
// tscores and tboxes have items from multiple images in a batch. Get the
// corresponding batch splits from input.
const auto& tbatch_splits = Input(2);
CAFFE_ENFORCE_EQ(tbatch_splits.dim(), 1);
batch_size = tbatch_splits.size(0);
batch_splits_data = tbatch_splits.data<T>();
}
Eigen::Map<const Eigen::Array<T, Eigen::Dynamic, 1>> batch_splits(batch_splits_data, batch_size);
CAFFE_ENFORCE_EQ(batch_splits.sum(), N);
auto* out_scores = Output(0, {0}, at::dtype<float>());
auto* out_boxes = Output(1, {0, box_dim}, at::dtype<float>());
auto* out_classes = Output(2, {0}, at::dtype<float>());
Tensor* out_keeps = nullptr;
Tensor* out_keeps_size = nullptr;
if (OutputSize() > 4) {
out_keeps = Output(4);
out_keeps_size = Output(5);
out_keeps->Resize(0);
out_keeps_size->Resize(batch_size, num_classes);
}
vector<int> total_keep_per_batch(batch_size);
int offset = 0;
for (int b = 0; b < batch_splits.size(); ++b) {
int num_boxes = batch_splits[b];
Eigen::Map<const ERArrXXf> scores(
tscores.data<float>() + offset * tscores.size(1),
num_boxes,
tscores.size(1));
Eigen::Map<const ERArrXXf> boxes(
tboxes.data<float>() + offset * tboxes.size(1),
num_boxes,
tboxes.size(1));
// To store updated scores if SoftNMS is used
ERArrXXf soft_nms_scores(num_boxes, tscores.size(1));
vector<vector<int>> keeps(num_classes);
// Perform nms to each class
// skip j = 0, because it's the background class
int total_keep_count = 0;
for (int j = 1; j < num_classes; j++) {
auto cur_scores = scores.col(get_score_cls_index(j));
auto inds = utils::GetArrayIndices(cur_scores > score_thres_);
auto cur_boxes =
boxes.block(0, get_box_cls_index(j) * box_dim, boxes.rows(), box_dim);
if (soft_nms_enabled_) {
auto cur_soft_nms_scores = soft_nms_scores.col(get_score_cls_index(j));
keeps[j] = utils::soft_nms_cpu(
&cur_soft_nms_scores,
cur_boxes,
cur_scores,
inds,
soft_nms_sigma_,
nms_thres_,
soft_nms_min_score_thres_,
soft_nms_method_,
-1, /* topN */
legacy_plus_one_);
} else {
std::stable_sort(
inds.data(),
inds.data() + inds.size(),
[&cur_scores](int lhs, int rhs) {
return cur_scores(lhs) > cur_scores(rhs);
});
int keep_max = detections_per_im_ > 0 ? detections_per_im_ : -1;
keeps[j] = utils::nms_cpu(
cur_boxes,
cur_scores,
inds,
nms_thres_,
keep_max,
legacy_plus_one_);
}
total_keep_count += keeps[j].size();
}
if (soft_nms_enabled_) {
// Re-map scores to the updated SoftNMS scores
new (&scores) Eigen::Map<const ERArrXXf>(
soft_nms_scores.data(),
soft_nms_scores.rows(),
soft_nms_scores.cols());
}
// Limit to max_per_image detections *over all classes*
if (detections_per_im_ > 0 && total_keep_count > detections_per_im_) {
// merge all scores (represented by indices) together and sort
auto get_all_scores_sorted = [&]() {
// flatten keeps[i][j] to [pair(i, keeps[i][j]), ...]
// first: class index (1 ~ keeps.size() - 1),
// second: values in keeps[first]
using KeepIndex = std::pair<int, int>;
vector<KeepIndex> ret(total_keep_count);
int ret_idx = 0;
for (int j = 1; j < num_classes; j++) {
auto& cur_keep = keeps[j];
for (auto& ckv : cur_keep) {
ret[ret_idx++] = {j, ckv};
}
}
std::stable_sort(
ret.data(),
ret.data() + ret.size(),
[this, &scores](const KeepIndex& lhs, const KeepIndex& rhs) {
return scores(lhs.second, this->get_score_cls_index(lhs.first)) >
scores(rhs.second, this->get_score_cls_index(rhs.first));
});
return ret;
};
// Pick the first `detections_per_im_` boxes with highest scores
auto all_scores_sorted = get_all_scores_sorted();
TORCH_DCHECK_GT(all_scores_sorted.size(), detections_per_im_);
// Reconstruct keeps from `all_scores_sorted`
for (auto& cur_keep : keeps) {
cur_keep.clear();
}
for (int i = 0; i < detections_per_im_; i++) {
TORCH_DCHECK_GT(all_scores_sorted.size(), i);
auto& cur = all_scores_sorted[i];
keeps[cur.first].push_back(cur.second);
}
total_keep_count = detections_per_im_;
}
total_keep_per_batch[b] = total_keep_count;
// Write results
int cur_start_idx = out_scores->size(0);
out_scores->Extend(total_keep_count, 50);
out_boxes->Extend(total_keep_count, 50);
out_classes->Extend(total_keep_count, 50);
int cur_out_idx = 0;
for (int j = 1; j < num_classes; j++) {
auto cur_scores = scores.col(get_score_cls_index(j));
auto cur_boxes =
boxes.block(0, get_box_cls_index(j) * box_dim, boxes.rows(), box_dim);
auto& cur_keep = keeps[j];
Eigen::Map<EArrXf> cur_out_scores(
out_scores->template mutable_data<float>() + cur_start_idx +
cur_out_idx,
cur_keep.size());
Eigen::Map<ERArrXXf> cur_out_boxes(
out_boxes->mutable_data<float>() +
(cur_start_idx + cur_out_idx) * box_dim,
cur_keep.size(),
box_dim);
Eigen::Map<EArrXf> cur_out_classes(
out_classes->template mutable_data<float>() + cur_start_idx +
cur_out_idx,
cur_keep.size());
utils::GetSubArray(
cur_scores, utils::AsEArrXt(cur_keep), &cur_out_scores);
utils::GetSubArrayRows(
cur_boxes, utils::AsEArrXt(cur_keep), &cur_out_boxes);
// NOLINTNEXTLINE(clang-diagnostic-sign-compare)
for (int k = 0; k < cur_keep.size(); k++) {
cur_out_classes[k] =
static_cast<float>(j - !output_classes_include_bg_cls_);
}
cur_out_idx += cur_keep.size();
}
if (out_keeps) {
out_keeps->Extend(total_keep_count, 50);
Eigen::Map<EArrXi> out_keeps_arr(
out_keeps->template mutable_data<int>() + cur_start_idx,
total_keep_count);
Eigen::Map<EArrXi> cur_out_keeps_size(
out_keeps_size->template mutable_data<int>() + b * num_classes,
num_classes);
cur_out_idx = 0;
for (int j = 0; j < num_classes; j++) {
out_keeps_arr.segment(cur_out_idx, keeps[j].size()) =
utils::AsEArrXt(keeps[j]);
cur_out_keeps_size[j] = keeps[j].size();
cur_out_idx += keeps[j].size();
}
}
offset += num_boxes;
}
if (OutputSize() > 3) {
auto* batch_splits_out = Output(3, {batch_size}, at::dtype<float>());
Eigen::Map<EArrXf> batch_splits_out_map(
batch_splits_out->template mutable_data<float>(), batch_size);
batch_splits_out_map =
Eigen::Map<const EArrXi>(total_keep_per_batch.data(), batch_size)
.cast<float>();
}
return true;
}
namespace {
REGISTER_CPU_OPERATOR(BoxWithNMSLimit, BoxWithNMSLimitOp<CPUContext>);
OPERATOR_SCHEMA(BoxWithNMSLimit)
.NumInputs(2, 3)
.NumOutputs(3, 6)
.SetDoc(R"DOC(
Apply NMS to each class (except background) and limit the number of
returned boxes.
)DOC")
.Arg("score_thresh", "(float) TEST.SCORE_THRESH")
.Arg("nms", "(float) TEST.NMS")
.Arg("detections_per_im", "(int) TEST.DEECTIONS_PER_IM")
.Arg("soft_nms_enabled", "(bool) TEST.SOFT_NMS.ENABLED")
.Arg("soft_nms_method", "(string) TEST.SOFT_NMS.METHOD")
.Arg("soft_nms_sigma", "(float) TEST.SOFT_NMS.SIGMA")
.Arg(
"soft_nms_min_score_thres",
"(float) Lower bound on updated scores to discard boxes")
.Arg(
"rotated",
"bool (default false). If true, then boxes (rois and deltas) include "
"angle info to handle rotation. The format will be "
"[ctr_x, ctr_y, width, height, angle (in degrees)].")
.Input(0, "scores", "Scores, size (count, num_classes)")
.Input(
1,
"boxes",
"Bounding box for each class, size (count, num_classes * 4). "
"For rotated boxes, this would have an additional angle (in degrees) "
"in the format [<optionaal_batch_id>, ctr_x, ctr_y, w, h, angle]. "
"Size: (count, num_classes * 5).")
.Input(
2,
"batch_splits",
"Tensor of shape (batch_size) with each element denoting the number "
"of RoIs/boxes belonging to the corresponding image in batch. "
"Sum should add up to total count of scores/boxes.")
.Output(0, "scores", "Filtered scores, size (n)")
.Output(
1,
"boxes",
"Filtered boxes, size (n, 4). "
"For rotated boxes, size (n, 5), format [ctr_x, ctr_y, w, h, angle].")
.Output(2, "classes", "Class id for each filtered score/box, size (n)")
.Output(
3,
"batch_splits",
"Output batch splits for scores/boxes after applying NMS")
.Output(4, "keeps", "Optional filtered indices, size (n)")
.Output(
5,
"keeps_size",
"Optional number of filtered indices per class, size (num_classes)");
SHOULD_NOT_DO_GRADIENT(BoxWithNMSLimit);
} // namespace
} // namespace caffe2
// clang-format off
C10_EXPORT_CAFFE2_OP_TO_C10_CPU(
BoxWithNMSLimit,
"_caffe2::BoxWithNMSLimit("
"Tensor scores, "
"Tensor boxes, "
"Tensor batch_splits, "
"float score_thresh, "
"float nms, "
"int detections_per_im, "
"bool soft_nms_enabled, "
"str soft_nms_method, "
"float soft_nms_sigma, "
"float soft_nms_min_score_thres, "
"bool rotated, "
"bool cls_agnostic_bbox_reg, "
"bool input_boxes_include_bg_cls, "
"bool output_classes_include_bg_cls, "
"bool legacy_plus_one "
") -> ("
"Tensor scores, "
"Tensor boxes, "
"Tensor classes, "
"Tensor batch_splits, "
"Tensor keeps, "
"Tensor keeps_size"
")",
caffe2::BoxWithNMSLimitOp<caffe2::CPUContext>);
// clang-format on
|