1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
|
#include "caffe2/operators/channel_shuffle_op.h"
#include <array>
#include "caffe2/core/context_gpu.h"
#include "caffe2/utils/math.h"
namespace caffe2 {
template <typename T, bool kNFirst>
__global__ void ChannelShuffleNCHWKernel(
const int G,
const int K,
const int HxW,
const T* X,
T* Y) {
const int C = G * K;
const int n = kNFirst ? blockIdx.x : blockIdx.y;
const int s = kNFirst ? blockIdx.y : blockIdx.x;
const int g = blockIdx.z % G;
const int k = blockIdx.z / G;
const int offset = s * CAFFE_CUDA_NUM_THREADS + threadIdx.x;
if (offset < HxW) {
#if __CUDA_ARCH__ >= 350
Y[(n * C + blockIdx.z) * HxW + offset] =
__ldg(X + (n * C + g * K + k) * HxW + offset);
#else
Y[(n * C + blockIdx.z) * HxW + offset] =
X[(n * C + g * K + k) * HxW + offset];
#endif
}
}
template <typename T, int kSharedSize>
__global__ void
ChannelShuffleNHWCKernel(const int G, const int K, const T* X, T* Y) {
__shared__ T sdata[kSharedSize];
const int C = G * K;
const int offset = blockIdx.x * C;
for (int i = threadIdx.x; i < C; i += blockDim.x) {
#if __CUDA_ARCH__ >= 350
sdata[i] = __ldg(X + offset + i);
#else
sdata[i] = X[offset + i];
#endif
}
__syncthreads();
for (int i = threadIdx.x; i < C; i += blockDim.x) {
const int g = i % G;
const int k = i / G;
Y[offset + i] = sdata[g * K + k];
}
}
template <>
bool ChannelShuffleOp<float, CUDAContext>::RunOnDeviceWithOrderNCHW() {
const auto& X = Input(0);
auto* Y = Output(0, X.sizes(), at::dtype<float>());
const int N = X.dim32(0);
const int C = X.dim32(1);
const int G = this->group_;
CAFFE_ENFORCE_EQ(C % G, 0);
if (X.numel() == 0) {
return true;
}
const int K = C / G;
const int HxW = X.numel() / (N * C);
const int S = (HxW + CAFFE_CUDA_NUM_THREADS - 1) / CAFFE_CUDA_NUM_THREADS;
const float* X_data = X.data<float>();
float* Y_data = Y->mutable_data<float>();
if (N <= kCUDAGridDimMaxY) {
const dim3 dim_grid(S, N, C);
ChannelShuffleNCHWKernel<float, false>
<<<dim_grid, CAFFE_CUDA_NUM_THREADS, 0, context_.cuda_stream()>>>(
G, K, HxW, X_data, Y_data);
C10_CUDA_KERNEL_LAUNCH_CHECK();
} else {
const dim3 dim_grid(N, S, C);
ChannelShuffleNCHWKernel<float, true>
<<<dim_grid, CAFFE_CUDA_NUM_THREADS, 0, context_.cuda_stream()>>>(
G, K, HxW, X_data, Y_data);
C10_CUDA_KERNEL_LAUNCH_CHECK();
}
return true;
}
template <>
bool ChannelShuffleOp<float, CUDAContext>::RunOnDeviceWithOrderNHWC() {
const auto& X = Input(0);
auto* Y = Output(0, X.sizes(), at::dtype<float>());
const int ndim = X.dim();
const int N = X.dim32(0);
const int C = X.dim32(ndim - 1);
const int G = this->group_;
CAFFE_ENFORCE_EQ(C % G, 0);
if (X.numel() == 0) {
return true;
}
const int K = C / G;
const int HxW = X.numel() / (N * C);
const int outer_size = N * HxW;
const float* X_data = X.data<float>();
float* Y_data = Y->mutable_data<float>();
if (C <= 32) {
ChannelShuffleNHWCKernel<float, 32>
<<<outer_size, CAFFE_CUDA_NUM_THREADS, 0, context_.cuda_stream()>>>(
G, K, X_data, Y_data);
C10_CUDA_KERNEL_LAUNCH_CHECK();
} else if (C <= 128) {
ChannelShuffleNHWCKernel<float, 128>
<<<outer_size, CAFFE_CUDA_NUM_THREADS, 0, context_.cuda_stream()>>>(
G, K, X_data, Y_data);
C10_CUDA_KERNEL_LAUNCH_CHECK();
} else if (C <= 512) {
ChannelShuffleNHWCKernel<float, 512>
<<<outer_size, CAFFE_CUDA_NUM_THREADS, 0, context_.cuda_stream()>>>(
G, K, X_data, Y_data);
C10_CUDA_KERNEL_LAUNCH_CHECK();
} else {
const std::array<std::int64_t, 3> dims = {N * HxW, G, K};
const std::array<std::int32_t, 3> axes = {0, 2, 1};
math::Transpose<std::int64_t, float, CUDAContext>(
3, dims.data(), axes.data(), X_data, Y_data, &context_);
}
return true;
}
template <>
bool ChannelShuffleGradientOp<float, CUDAContext>::RunOnDeviceWithOrderNCHW() {
const auto& dY = Input(0);
auto* dX = Output(0, dY.sizes(), at::dtype<float>());
const int N = dY.dim32(0);
const int C = dY.dim32(1);
const int G = this->group_;
CAFFE_ENFORCE_EQ(C % G, 0);
if (dY.numel() == 0) {
return true;
}
const int K = C / G;
const int HxW = dY.numel() / (N * C);
const int S = (HxW + CAFFE_CUDA_NUM_THREADS - 1) / CAFFE_CUDA_NUM_THREADS;
const float* dY_data = dY.data<float>();
float* dX_data = dX->mutable_data<float>();
if (N <= kCUDAGridDimMaxY) {
const dim3 dim_grid(S, N, C);
ChannelShuffleNCHWKernel<float, false>
<<<dim_grid, CAFFE_CUDA_NUM_THREADS, 0, context_.cuda_stream()>>>(
K, G, HxW, dY_data, dX_data);
C10_CUDA_KERNEL_LAUNCH_CHECK();
} else {
const dim3 dim_grid(N, S, C);
ChannelShuffleNCHWKernel<float, true>
<<<dim_grid, CAFFE_CUDA_NUM_THREADS, 0, context_.cuda_stream()>>>(
K, G, HxW, dY_data, dX_data);
C10_CUDA_KERNEL_LAUNCH_CHECK();
}
return true;
}
template <>
bool ChannelShuffleGradientOp<float, CUDAContext>::RunOnDeviceWithOrderNHWC() {
const auto& dY = Input(0);
auto* dX = Output(0, dY.sizes(), at::dtype<float>());
const int ndim = dY.dim();
const int N = dY.dim32(0);
const int C = dY.dim32(ndim - 1);
const int G = this->group_;
CAFFE_ENFORCE_EQ(C % G, 0);
if (dY.numel() == 0) {
return true;
}
const int K = C / G;
const int HxW = dY.numel() / (N * C);
const int outer_size = N * HxW;
const float* dY_data = dY.data<float>();
float* dX_data = dX->mutable_data<float>();
if (C <= 32) {
ChannelShuffleNHWCKernel<float, 32>
<<<outer_size, CAFFE_CUDA_NUM_THREADS, 0, context_.cuda_stream()>>>(
K, G, dY_data, dX_data);
C10_CUDA_KERNEL_LAUNCH_CHECK();
} else if (C <= 128) {
ChannelShuffleNHWCKernel<float, 128>
<<<outer_size, CAFFE_CUDA_NUM_THREADS, 0, context_.cuda_stream()>>>(
K, G, dY_data, dX_data);
C10_CUDA_KERNEL_LAUNCH_CHECK();
} else if (C <= 512) {
ChannelShuffleNHWCKernel<float, 512>
<<<outer_size, CAFFE_CUDA_NUM_THREADS, 0, context_.cuda_stream()>>>(
K, G, dY_data, dX_data);
C10_CUDA_KERNEL_LAUNCH_CHECK();
} else {
const std::array<std::int64_t, 3> dims = {N * HxW, K, G};
const std::array<std::int32_t, 3> axes = {0, 2, 1};
math::Transpose<std::int64_t, float, CUDAContext>(
3, dims.data(), axes.data(), dY_data, dX_data, &context_);
}
return true;
}
REGISTER_CUDA_OPERATOR(ChannelShuffle, ChannelShuffleOp<float, CUDAContext>);
REGISTER_CUDA_OPERATOR(
ChannelShuffleGradient,
ChannelShuffleGradientOp<float, CUDAContext>);
} // namespace caffe2
|