1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
|
#include "caffe2/operators/collect_and_distribute_fpn_rpn_proposals_op.h"
namespace caffe2 {
namespace utils {
// Compute the area of an array of boxes.
ERArrXXf BoxesArea(const ERArrXXf& boxes, const bool legacy_plus_one) {
// equivalent to python code
// w = (boxes[:, 2] - boxes[:, 0] + 1)
// h = (boxes[:, 3] - boxes[:, 1] + 1)
// areas = w * h
// assert np.all(areas >= 0), 'Negative areas founds'
const auto w = boxes.col(2) - boxes.col(0) + int(legacy_plus_one);
const auto h = boxes.col(3) - boxes.col(1) + int(legacy_plus_one);
const ERArrXXf areas = w * h;
CAFFE_ENFORCE((areas >= 0).all(), "Negative areas founds: ", boxes);
// NOLINTNEXTLINE(performance-no-automatic-move)
return areas;
}
// Determine which FPN level each RoI in a set of RoIs should map to based
// on the heuristic in the FPN paper.
ERArrXXf MapRoIsToFpnLevels(
Eigen::Ref<const ERArrXXf> rois,
const float k_min,
const float k_max,
const float s0,
const float lvl0,
const bool legacy_plus_one) {
// Compute level ids
ERArrXXf s = BoxesArea(rois, legacy_plus_one).sqrt();
// s0 = cfg.FPN.ROI_CANONICAL_SCALE # default: 224
// lvl0 = cfg.FPN.ROI_CANONICAL_LEVEL # default: 4
// Eqn.(1) in FPN paper
// equivalent to python code
// target_lvls = np.floor(lvl0 + np.log2(s / s0 + 1e-6))
// target_lvls = np.clip(target_lvls, k_min, k_max)
auto target_lvls = (lvl0 + (s / s0 + 1e-6).log() / log(2)).floor();
auto target_lvls_clipped = target_lvls.min(k_max).max(k_min);
return target_lvls_clipped;
}
// Sort RoIs from highest to lowest individual RoI score based on
// values from scores array and limit to n results
void SortAndLimitRoIsByScores(
Eigen::Ref<const EArrXf> scores,
int n,
ERArrXXf& rois) {
CAFFE_ENFORCE(rois.rows() == scores.size(), "RoIs and scores count mismatch");
// Create index array with 0, 1, ... N
std::vector<int> idxs(rois.rows());
std::iota(idxs.begin(), idxs.end(), 0);
// Reuse a comparator based on scores and store a copy of RoIs that
// will be truncated and manipulated below
auto comp = [&scores](int lhs, int rhs) {
if (scores(lhs) > scores(rhs)) {
return true;
}
if (scores(lhs) < scores(rhs)) {
return false;
}
// To ensure the sort is stable
return lhs < rhs;
};
ERArrXXf rois_copy = rois;
// Note that people have found nth_element + sort to be much faster
// than partial_sort so we use it here
if (n > 0 && n < rois.rows()) {
std::nth_element(idxs.begin(), idxs.begin() + n, idxs.end(), comp);
rois.resize(n, rois.cols());
} else {
n = rois.rows();
}
std::sort(idxs.begin(), idxs.begin() + n, comp);
// Update RoIs based on new order
for (int i = 0; i < n; i++) {
rois.row(i) = rois_copy.row(idxs[i]);
}
}
// Updates arr to be indices that would sort the array. Implementation of
// https://docs.scipy.org/doc/numpy/reference/generated/numpy.argsort.html
void ArgSort(EArrXi& arr) {
// Create index array with 0, 1, ... N and sort based on array values
std::vector<int> idxs(arr.size());
std::iota(std::begin(idxs), std::end(idxs), 0);
std::sort(idxs.begin(), idxs.end(), [&arr](int lhs, int rhs) {
return arr(lhs) < arr(rhs);
});
// Update array to match new order
for (int i = 0; i < arr.size(); i++) {
arr(i) = idxs[i];
}
}
// Update out_filtered and out_indices with rows from rois where lvl matches
// value in lvls passed in.
void RowsWhereRoILevelEquals(
Eigen::Ref<const ERArrXXf> rois,
const ERArrXXf& lvls,
const int lvl,
ERArrXXf* out_filtered,
EArrXi* out_indices) {
CAFFE_ENFORCE(out_filtered != nullptr, "Output filtered required");
CAFFE_ENFORCE(out_indices != nullptr, "Output indices required");
CAFFE_ENFORCE(rois.rows() == lvls.rows(), "RoIs and lvls count mismatch");
// Calculate how many rows we need
int filtered_size = (lvls == lvl).rowwise().any().count();
// Fill in the rows and indices
out_filtered->resize(filtered_size, rois.cols());
out_indices->resize(filtered_size);
for (int i = 0, filtered_idx = 0; i < rois.rows(); i++) {
auto lvl_row = lvls.row(i);
if ((lvl_row == lvl).any()) {
out_filtered->row(filtered_idx) = rois.row(i);
(*out_indices)(filtered_idx) = i;
filtered_idx++;
}
}
}
} // namespace utils
template <>
bool CollectAndDistributeFpnRpnProposalsOp<CPUContext>::RunOnDevice() {
int num_rpn_lvls = rpn_max_level_ - rpn_min_level_ + 1;
CAFFE_ENFORCE_EQ(InputSize(), 2 * num_rpn_lvls);
int num_roi_lvls = roi_max_level_ - roi_min_level_ + 1;
CAFFE_ENFORCE_EQ(OutputSize(), num_roi_lvls + 2);
// Collect rois and scores in Eigen
// rois are in [[batch_idx, x0, y0, x1, y2], ...] format
// Combine predictions across all levels and retain the top scoring
//
// equivalent to python code
// roi_inputs = inputs[:num_rpn_lvls]
// score_inputs = inputs[num_rpn_lvls:]
// rois = np.concatenate([blob.data for blob in roi_inputs])
// scores = np.concatenate([blob.data for blob in score_inputs]).squeeze()
int proposal_num = 0;
for (int i = 0; i < num_rpn_lvls; i++) {
const auto& roi_in = Input(i);
proposal_num += roi_in.size(0);
}
ERArrXXf rois(proposal_num, 5);
EArrXf scores(proposal_num);
int len = 0;
for (int i = 0; i < num_rpn_lvls; i++) {
const auto& roi_in = Input(i);
const int n = roi_in.size(0);
Eigen::Map<const ERArrXXf> roi(roi_in.data<float>(), n, 5);
rois.block(len, 0, n, 5) = roi;
const auto& score_in = Input(num_rpn_lvls + i);
CAFFE_ENFORCE_EQ(score_in.size(0), n);
// No need to squeeze, since we are reshaping when converting to Eigen
// https://docs.scipy.org/doc/numpy/reference/generated/numpy.squeeze.html
Eigen::Map<const EArrXf> score(score_in.data<float>(), n);
scores.segment(len, n) = score;
len += n;
}
// Grab only top rpn_post_nms_topN rois
// equivalent to python code
// inds = np.argsort(-scores)[:rpn_post_nms_topN]
// rois = rois[inds, :]
utils::SortAndLimitRoIsByScores(scores, rpn_post_nms_topN_, rois);
// Distribute
// equivalent to python code
// lvl_min = cfg.FPN.ROI_MIN_LEVEL
// lvl_max = cfg.FPN.ROI_MAX_LEVEL
// lvls = fpn.map_rois_to_fpn_levels(rois[:, 1:5], lvl_min, lvl_max)
const int lvl_min = roi_min_level_;
const int lvl_max = roi_max_level_;
const int canon_scale = roi_canonical_scale_;
const int canon_level = roi_canonical_level_;
auto rois_block = rois.block(0, 1, rois.rows(), 4);
auto lvls = utils::MapRoIsToFpnLevels(
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
rois_block, lvl_min, lvl_max, canon_scale, canon_level, legacy_plus_one_);
// equivalent to python code
// outputs[0].reshape(rois.shape)
// outputs[0].data[...] = rois
auto* rois_out = Output(0, {rois.rows(), rois.cols()}, at::dtype<float>());
Eigen::Map<ERArrXXf> rois_out_mat(
rois_out->template mutable_data<float>(), rois.rows(), rois.cols());
rois_out_mat = rois;
// Create new roi blobs for each FPN level
// (See: modeling.FPN.add_multilevel_roi_blobs which is similar but annoying
// to generalize to support this particular case.)
//
// equivalent to python code
// rois_idx_order = np.empty((0, ))
// for (output_idx, lvl in enumerate(range(lvl_min, lvl_max + 1)))
// idx_lvl = np.where(lvls == lvl)[0]
// blob_roi_level = rois[idx_lvl, :]
// outputs[output_idx + 1].reshape(blob_roi_level.shape)
// outputs[output_idx + 1].data[...] = blob_roi_level
// rois_idx_order = np.concatenate((rois_idx_order, idx_lvl))
// rois_idx_restore = np.argsort(rois_idx_order)
// blob_utils.py_op_copy_blob(rois_idx_restore.astype(np.int32),
// outputs[-1])
EArrXi rois_idx_restore;
for (int i = 0, lvl = lvl_min; i < num_roi_lvls; i++, lvl++) {
ERArrXXf blob_roi_level;
EArrXi idx_lvl;
utils::RowsWhereRoILevelEquals(rois, lvls, lvl, &blob_roi_level, &idx_lvl);
// Output blob_roi_level
auto* roi_out = Output(
i + 1,
{blob_roi_level.rows(), blob_roi_level.cols()},
at::dtype<float>());
Eigen::Map<ERArrXXf> roi_out_mat(
roi_out->template mutable_data<float>(),
blob_roi_level.rows(),
blob_roi_level.cols());
roi_out_mat = blob_roi_level;
// Append indices from idx_lvl to rois_idx_restore
rois_idx_restore.conservativeResize(
rois_idx_restore.size() + idx_lvl.size());
rois_idx_restore.tail(idx_lvl.size()) = idx_lvl;
}
utils::ArgSort(rois_idx_restore);
auto* rois_idx_restore_out =
Output(OutputSize() - 1, {rois_idx_restore.size()}, at::dtype<int>());
Eigen::Map<EArrXi> rois_idx_restore_out_mat(
rois_idx_restore_out->template mutable_data<int>(),
rois_idx_restore.size());
rois_idx_restore_out_mat = rois_idx_restore;
return true;
}
template <>
bool CollectRpnProposalsOp<CPUContext>::RunOnDevice() {
int num_rpn_lvls = rpn_max_level_ - rpn_min_level_ + 1;
CAFFE_ENFORCE_EQ(InputSize(), 2 * num_rpn_lvls);
// Collect rois and scores in Eigen
// rois are in [[batch_idx, x0, y0, x1, y2], ...] format
// Combine predictions across all levels and retain the top scoring
//
// equivalent to python code
// roi_inputs = inputs[:num_rpn_lvls]
// score_inputs = inputs[num_rpn_lvls:]
// rois = np.concatenate([blob.data for blob in roi_inputs])
// scores = np.concatenate([blob.data for blob in score_inputs]).squeeze()
int proposal_num = 0;
for (int i = 0; i < num_rpn_lvls; i++) {
const auto& roi_in = Input(i);
proposal_num += roi_in.size(0);
}
ERArrXXf rois(proposal_num, 5);
EArrXf scores(proposal_num);
int len = 0;
for (int i = 0; i < num_rpn_lvls; i++) {
const auto& roi_in = Input(i);
const int n = roi_in.size(0);
Eigen::Map<const ERArrXXf> roi(roi_in.data<float>(), n, 5);
rois.block(len, 0, n, 5) = roi;
const auto& score_in = Input(num_rpn_lvls + i);
CAFFE_ENFORCE_EQ(score_in.size(0), n);
// No need to squeeze, since we are reshaping when converting to Eigen
// https://docs.scipy.org/doc/numpy/reference/generated/numpy.squeeze.html
Eigen::Map<const EArrXf> score(score_in.data<float>(), n);
scores.segment(len, n) = score;
len += n;
}
// Grab only top rpn_post_nms_topN rois
// equivalent to python code
// inds = np.argsort(-scores)[:rpn_post_nms_topN]
// rois = rois[inds, :]
utils::SortAndLimitRoIsByScores(scores, rpn_post_nms_topN_, rois);
// equivalent to python code
// outputs[0].reshape(rois.shape)
// outputs[0].data[...] = rois
auto* rois_out = Output(0, {rois.rows(), rois.cols()}, at::dtype<float>());
Eigen::Map<ERArrXXf> rois_out_mat(
rois_out->template mutable_data<float>(), rois.rows(), rois.cols());
rois_out_mat = rois;
return true;
}
template <>
bool DistributeFpnProposalsOp<CPUContext>::RunOnDevice() {
int num_roi_lvls = roi_max_level_ - roi_min_level_ + 1;
CAFFE_ENFORCE_EQ(OutputSize(), num_roi_lvls + 1);
// Load Input(0) to rois
const auto& rois_in = Input(0);
const int num_rois = rois_in.size(0);
const int dim_rois = rois_in.size(1);
CAFFE_ENFORCE(dim_rois == 4 || dim_rois == 5);
Eigen::Map<const ERArrXXf> rois_4or5(
rois_in.data<float>(), num_rois, dim_rois);
ERArrXXf rois = ERArrXXf::Zero(num_rois, 5);
rois.rightCols(dim_rois) = rois_4or5;
// Distribute
// equivalent to python code
// lvl_min = cfg.FPN.ROI_MIN_LEVEL
// lvl_max = cfg.FPN.ROI_MAX_LEVEL
// lvls = fpn.map_rois_to_fpn_levels(rois[:, 1:5], lvl_min, lvl_max)
const int lvl_min = roi_min_level_;
const int lvl_max = roi_max_level_;
const int canon_scale = roi_canonical_scale_;
const int canon_level = roi_canonical_level_;
auto rois_block = rois.block(0, 1, rois.rows(), 4);
auto lvls = utils::MapRoIsToFpnLevels(
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
rois_block, lvl_min, lvl_max, canon_scale, canon_level, legacy_plus_one_);
// Create new roi blobs for each FPN level
// (See: modeling.FPN.add_multilevel_roi_blobs which is similar but annoying
// to generalize to support this particular case.)
//
// equivalent to python code
// rois_idx_order = np.empty((0, ))
// for (output_idx, lvl in enumerate(range(lvl_min, lvl_max + 1)))
// idx_lvl = np.where(lvls == lvl)[0]
// blob_roi_level = rois[idx_lvl, :]
// outputs[output_idx + 1].reshape(blob_roi_level.shape)
// outputs[output_idx + 1].data[...] = blob_roi_level
// rois_idx_order = np.concatenate((rois_idx_order, idx_lvl))
// rois_idx_restore = np.argsort(rois_idx_order)
// blob_utils.py_op_copy_blob(rois_idx_restore.astype(np.int32),
// outputs[-1])
EArrXi rois_idx_restore;
for (int i = 0, lvl = lvl_min; i < num_roi_lvls; i++, lvl++) {
ERArrXXf blob_roi_level;
EArrXi idx_lvl;
utils::RowsWhereRoILevelEquals(rois, lvls, lvl, &blob_roi_level, &idx_lvl);
// Output blob_roi_level
auto* roi_out = Output(
i + 0,
{blob_roi_level.rows(), blob_roi_level.cols()},
at::dtype<float>());
Eigen::Map<ERArrXXf> roi_out_mat(
roi_out->template mutable_data<float>(),
blob_roi_level.rows(),
blob_roi_level.cols());
roi_out_mat = blob_roi_level;
// Append indices from idx_lvl to rois_idx_restore
rois_idx_restore.conservativeResize(
rois_idx_restore.size() + idx_lvl.size());
rois_idx_restore.tail(idx_lvl.size()) = idx_lvl;
}
utils::ArgSort(rois_idx_restore);
auto* rois_idx_restore_out =
Output(OutputSize() - 1, {rois_idx_restore.size()}, at::dtype<int>());
Eigen::Map<EArrXi> rois_idx_restore_out_mat(
rois_idx_restore_out->template mutable_data<int>(),
rois_idx_restore.size());
rois_idx_restore_out_mat = rois_idx_restore;
return true;
}
namespace {
REGISTER_CPU_OPERATOR(
CollectAndDistributeFpnRpnProposals,
CollectAndDistributeFpnRpnProposalsOp<CPUContext>);
REGISTER_CPU_OPERATOR(CollectRpnProposals, CollectRpnProposalsOp<CPUContext>);
REGISTER_CPU_OPERATOR(
DistributeFpnProposals,
DistributeFpnProposalsOp<CPUContext>);
OPERATOR_SCHEMA(CollectAndDistributeFpnRpnProposals)
.NumInputs(2, INT_MAX)
.NumOutputs(3, INT_MAX)
.SetDoc(R"DOC(
Merge RPN proposals generated at multiple FPN levels and then
distribute those proposals to their appropriate FPN levels for Faster RCNN.
An anchor at one FPN level may predict an RoI that will map to another level,
hence the need to redistribute the proposals.
Only inference is supported. To train, please use the original Python
operator in Detectron.
Inputs and outputs are examples only; if min/max levels change,
the number of inputs and outputs, as well as their level numbering,
will change.
)DOC")
.Arg("roi_canonical_scale", "(int) ROI_CANONICAL_SCALE")
.Arg("roi_canonical_level", "(int) ROI_CANONICAL_LEVEL")
.Arg("roi_max_level", "(int) ROI_MAX_LEVEL")
.Arg("roi_min_level", "(int) ROI_MIN_LEVEL")
.Arg("rpn_max_level", "(int) RPN_MAX_LEVEL")
.Arg("rpn_min_level", "(int) RPN_MIN_LEVEL")
.Arg("rpn_post_nms_topN", "(int) RPN_POST_NMS_TOP_N")
.Input(
0,
"rpn_rois_fpn2",
"RPN proposals for FPN level 2, "
"format (image_index, x1, y1, x2, y2). See rpn_rois "
"documentation from GenerateProposals.")
.Input(
1,
"rpn_rois_fpn3",
"RPN proposals for FPN level 3, "
"format (image_index, x1, y1, x2, y2). See rpn_rois "
"documentation from GenerateProposals.")
.Input(
2,
"rpn_rois_fpn4",
"RPN proposals for FPN level 4, "
"format (image_index, x1, y1, x2, y2). See rpn_rois "
"documentation from GenerateProposals.")
.Input(
3,
"rpn_rois_fpn5",
"RPN proposals for FPN level 5, "
"format (image_index, x1, y1, x2, y2). See rpn_rois "
"documentation from GenerateProposals.")
.Input(
4,
"rpn_rois_fpn6",
"RPN proposals for FPN level 6, "
"format (image_index, x1, y1, x2, y2). See rpn_rois "
"documentation from GenerateProposals.")
.Input(
5,
"rpn_roi_probs_fpn2",
"RPN objectness probabilities for FPN level 2. "
"See rpn_roi_probs documentation from GenerateProposals.")
.Input(
6,
"rpn_roi_probs_fpn3",
"RPN objectness probabilities for FPN level 3. "
"See rpn_roi_probs documentation from GenerateProposals.")
.Input(
7,
"rpn_roi_probs_fpn4",
"RPN objectness probabilities for FPN level 4. "
"See rpn_roi_probs documentation from GenerateProposals.")
.Input(
8,
"rpn_roi_probs_fpn5",
"RPN objectness probabilities for FPN level 5. "
"See rpn_roi_probs documentation from GenerateProposals.")
.Input(
9,
"rpn_roi_probs_fpn6",
"RPN objectness probabilities for FPN level 6. "
"See rpn_roi_probs documentation from GenerateProposals.")
.Output(
0,
"rois",
"Top proposals limited to rpn_post_nms_topN total, "
"format (image_index, x1, y1, x2, y2)")
.Output(
1,
"rois_fpn2",
"RPN proposals for ROI level 2, "
"format (image_index, x1, y1, x2, y2)")
.Output(
2,
"rois_fpn3",
"RPN proposals for ROI level 3, "
"format (image_index, x1, y1, x2, y2)")
.Output(
3,
"rois_fpn4",
"RPN proposals for ROI level 4, "
"format (image_index, x1, y1, x2, y2)")
.Output(
4,
"rois_fpn5",
"RPN proposals for ROI level 5, "
"format (image_index, x1, y1, x2, y2)")
.Output(
5,
"rois_idx_restore",
"Permutation on the concatenation of all "
"rois_fpni, i=min...max, such that when applied the RPN RoIs are "
"restored to their original order in the input blobs.");
SHOULD_NOT_DO_GRADIENT(CollectAndDistributeFpnRpnProposals);
OPERATOR_SCHEMA(CollectRpnProposals)
.NumInputs(2, INT_MAX)
.NumOutputs(1)
.SetDoc(R"DOC(
...
)DOC")
.Arg("rpn_max_level", "(int) RPN_MAX_LEVEL")
.Arg("rpn_min_level", "(int) RPN_MIN_LEVEL")
.Arg("rpn_post_nms_topN", "(int) RPN_POST_NMS_TOP_N")
.Input(
0,
"rpn_rois_fpn2",
"RPN proposals for FPN level 2, "
"format (image_index, x1, y1, x2, y2). See rpn_rois "
"documentation from GenerateProposals.")
.Input(
1,
"rpn_rois_fpn3",
"RPN proposals for FPN level 3, "
"format (image_index, x1, y1, x2, y2). See rpn_rois "
"documentation from GenerateProposals.")
.Input(
2,
"rpn_rois_fpn4",
"RPN proposals for FPN level 4, "
"format (image_index, x1, y1, x2, y2). See rpn_rois "
"documentation from GenerateProposals.")
.Input(
3,
"rpn_rois_fpn5",
"RPN proposals for FPN level 5, "
"format (image_index, x1, y1, x2, y2). See rpn_rois "
"documentation from GenerateProposals.")
.Input(
4,
"rpn_rois_fpn6",
"RPN proposals for FPN level 6, "
"format (image_index, x1, y1, x2, y2). See rpn_rois "
"documentation from GenerateProposals.")
.Input(
5,
"rpn_roi_probs_fpn2",
"RPN objectness probabilities for FPN level 2. "
"See rpn_roi_probs documentation from GenerateProposals.")
.Input(
6,
"rpn_roi_probs_fpn3",
"RPN objectness probabilities for FPN level 3. "
"See rpn_roi_probs documentation from GenerateProposals.")
.Input(
7,
"rpn_roi_probs_fpn4",
"RPN objectness probabilities for FPN level 4. "
"See rpn_roi_probs documentation from GenerateProposals.")
.Input(
8,
"rpn_roi_probs_fpn5",
"RPN objectness probabilities for FPN level 5. "
"See rpn_roi_probs documentation from GenerateProposals.")
.Input(
9,
"rpn_roi_probs_fpn6",
"RPN objectness probabilities for FPN level 6. "
"See rpn_roi_probs documentation from GenerateProposals.")
.Output(
0,
"rois",
"Top proposals limited to rpn_post_nms_topN total, "
"format (image_index, x1, y1, x2, y2)");
SHOULD_NOT_DO_GRADIENT(CollectRpnProposals);
OPERATOR_SCHEMA(DistributeFpnProposals)
.NumInputs(1)
.NumOutputs(2, INT_MAX)
.SetDoc(R"DOC(
...
)DOC")
.Arg("roi_canonical_scale", "(int) ROI_CANONICAL_SCALE")
.Arg("roi_canonical_level", "(int) ROI_CANONICAL_LEVEL")
.Arg("roi_max_level", "(int) ROI_MAX_LEVEL")
.Arg("roi_min_level", "(int) ROI_MIN_LEVEL")
.Input(
0,
"rois",
"Top proposals limited to rpn_post_nms_topN total, "
"format (image_index, x1, y1, x2, y2)")
.Output(
0,
"rois_fpn2",
"RPN proposals for ROI level 2, "
"format (image_index, x1, y1, x2, y2)")
.Output(
1,
"rois_fpn3",
"RPN proposals for ROI level 3, "
"format (image_index, x1, y1, x2, y2)")
.Output(
2,
"rois_fpn4",
"RPN proposals for ROI level 4, "
"format (image_index, x1, y1, x2, y2)")
.Output(
3,
"rois_fpn5",
"RPN proposals for ROI level 5, "
"format (image_index, x1, y1, x2, y2)")
.Output(
4,
"rois_idx_restore",
"Permutation on the concatenation of all "
"rois_fpni, i=min...max, such that when applied the RPN RoIs are "
"restored to their original order in the input blobs.");
SHOULD_NOT_DO_GRADIENT(DistributeFpnProposals);
} // namespace
} // namespace caffe2
// clang-format off
C10_EXPORT_CAFFE2_OP_TO_C10_CPU(
CollectAndDistributeFpnRpnProposals,
"_caffe2::CollectAndDistributeFpnRpnProposals("
"Tensor[] input_list, "
"int roi_canonical_scale, "
"int roi_canonical_level, "
"int roi_max_level, "
"int roi_min_level, "
"int rpn_max_level, "
"int rpn_min_level, "
"int rpn_post_nms_topN, "
"bool legacy_plus_one"
") -> ("
"Tensor rois, "
"Tensor rois_fpn2, "
"Tensor rois_fpn3, "
"Tensor rois_fpn4, "
"Tensor rois_fpn5, "
"Tensor rois_idx_restore_int32"
")",
caffe2::CollectAndDistributeFpnRpnProposalsOp<caffe2::CPUContext>);
C10_EXPORT_CAFFE2_OP_TO_C10_CPU(
CollectRpnProposals,
"_caffe2::CollectRpnProposals("
"Tensor[] input_list, "
"int rpn_max_level, "
"int rpn_min_level, "
"int rpn_post_nms_topN"
") -> ("
"Tensor rois"
")",
caffe2::CollectRpnProposalsOp<caffe2::CPUContext>);
C10_EXPORT_CAFFE2_OP_TO_C10_CPU(
DistributeFpnProposals,
"_caffe2::DistributeFpnProposals("
"Tensor rois, "
"int roi_canonical_scale, "
"int roi_canonical_level, "
"int roi_max_level, "
"int roi_min_level, "
"bool legacy_plus_one"
") -> ("
"Tensor rois_fpn2, "
"Tensor rois_fpn3, "
"Tensor rois_fpn4, "
"Tensor rois_fpn5, "
"Tensor rois_idx_restore_int32"
")",
caffe2::DistributeFpnProposalsOp<caffe2::CPUContext>);
// clang-format on
|