1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
|
#include "caffe2/operators/conv_op.h"
#include "caffe2/operators/conv_op_impl.h"
#include "caffe2/operators/conv_pool_op_base.h"
namespace caffe2 {
std::vector<TensorShape> TensorInferenceForConvGradient(
const OperatorDef& def,
const std::vector<TensorShape>& in) {
CAFFE_ENFORCE_EQ(in.size(), 3U, "ConvGradient requires 3 inputs");
if (in[0].unknown_shape()) {
std::vector<TensorShape> out(1);
out[0].set_unknown_shape(true);
return out;
}
ArgumentHelper helper(def);
const auto no_bias = helper.GetSingleArgument<int>("no_bias", 0);
const auto n_outputs = def.output_size();
vector<TensorShape> out(n_outputs);
// FILTER_GRAD has the same shape as FILTER
out[0] = in[1];
if (!no_bias) {
vector<int64_t> bias_shape = {in[1].dims(0)};
out[1] = CreateTensorShape(bias_shape, in[1].data_type());
}
if (n_outputs == 3 || (no_bias && n_outputs == 2)) {
// INPUT_GRAD has the same shape as INPUT
out[out.size() - 1] = in[0];
}
return out;
}
OpSchema::Cost CostInferenceForConvGradient(
const OperatorDef& def,
const vector<TensorShape>& inputs) {
CAFFE_ENFORCE_EQ(inputs.size(), 3U, "ConvGradient requires 3 inputs");
ArgumentHelper helper(def);
const auto order =
StringToStorageOrder(helper.GetSingleArgument<string>("order", "NCHW"));
const auto no_bias = helper.GetSingleArgument<int>("no_bias", 0);
const auto n_outputs = def.output_size();
const auto& outputs = TensorInferenceForConvGradient(def, inputs);
const auto& X = inputs[0];
const auto& filter = inputs[1];
const auto& dY = inputs[2];
const auto N = X.dims(0);
const auto M = filter.dims(0);
const auto C =
(order == StorageOrder::NCHW ? X.dims(1) : X.dims(X.dims_size() - 1));
const auto output_image_size =
(order == StorageOrder::NCHW
? nElemFromDim(dY, 2)
: nElemBetweenDim(dY, 1, dY.dims_size() - 1));
auto kernel_elem =
(order == StorageOrder::NCHW
? nElemFromDim(filter, 2)
: nElemBetweenDim(filter, 1, filter.dims_size() - 1));
struct OpSchema::Cost c;
c.flops = N * 2 * M * kernel_elem * C * output_image_size;
if (!no_bias) {
c.flops += N * (M * output_image_size);
}
if (n_outputs == 3 || (no_bias && n_outputs == 2)) {
c.flops += N * 2 * M * kernel_elem * C * output_image_size;
}
c.bytes_read = (nElemFromDim(X) + nElemFromDim(filter) + nElemFromDim(dY)) *
sizeof(float);
for (auto i = 0; i < n_outputs; i++) {
c.bytes_written += nElemFromDim(outputs[i]) * sizeof(float);
}
c.params_bytes = nElemFromDim(filter) * sizeof(float);
return c;
}
REGISTER_CPU_OPERATOR(ConvGradient, ConvGradientOp<float, CPUContext>);
OPERATOR_SCHEMA(ConvGradient)
.NumInputs(2, 3)
.NumOutputs(1, 3)
.TensorInferenceFunction(TensorInferenceForConvGradient)
.CostInferenceFunction(CostInferenceForConvGradient);
REGISTER_CPU_OPERATOR(Conv1DGradient, ConvGradientOp<float, CPUContext>);
OPERATOR_SCHEMA(Conv1DGradient).NumInputs(2, 3).NumOutputs(1, 3);
REGISTER_CPU_OPERATOR(Conv2DGradient, ConvGradientOp<float, CPUContext>);
OPERATOR_SCHEMA(Conv2DGradient).NumInputs(2, 3).NumOutputs(1, 3);
REGISTER_CPU_OPERATOR(Conv3DGradient, ConvGradientOp<float, CPUContext>);
OPERATOR_SCHEMA(Conv3DGradient).NumInputs(2, 3).NumOutputs(1, 3);
class GetConvGradient : public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
vector<OperatorDef> GetGradientDefs() override {
CAFFE_ENFORCE(def_.input_size() == 3 || def_.input_size() == 2);
ArgumentHelper argsHelper(def_);
// NOLINTNEXTLINE(modernize-use-bool-literals)
auto compute_dX = !argsHelper.GetSingleArgument<bool>("no_gradient_to_input", 0);
if (def_.input_size() == 3) {
if (compute_dX) {
return SingleGradientDef(
def_.type() + "Gradient",
"",
vector<string>{I(0), I(1), GO(0)},
vector<string>{GI(1), GI(2), GI(0)});
} else {
return SingleGradientDef(
def_.type() + "Gradient",
"",
vector<string>{I(0), I(1), GO(0)},
vector<string>{GI(1), GI(2)});
}
} else {
if (compute_dX) {
return SingleGradientDef(
def_.type() + "Gradient",
"",
vector<string>{I(0), I(1), GO(0)},
vector<string>{GI(1), GI(0)},
vector<Argument>{MakeArgument<int>("no_bias", 1)});
} else {
return SingleGradientDef(
def_.type() + "Gradient",
"",
vector<string>{I(0), I(1), GO(0)},
vector<string>{GI(1)},
vector<Argument>{MakeArgument<int>("no_bias", 1)});
}
}
}
};
REGISTER_GRADIENT(Conv, GetConvGradient);
REGISTER_GRADIENT(Conv1D, GetConvGradient);
REGISTER_GRADIENT(Conv2D, GetConvGradient);
REGISTER_GRADIENT(Conv3D, GetConvGradient);
} // namespace caffe2
|