1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
|
#include "caffe2/operators/conv_op.h"
#include "caffe2/operators/conv_op_impl.h"
#include "caffe2/operators/conv_pool_op_base.h"
namespace caffe2 {
// NOLINTNEXTLINE(modernize-avoid-c-arrays,cppcoreguidelines-avoid-c-arrays)
const char kConvDoc[] = R"DOC(
The Conv2D operator computes a 2D convolution operation over an input blob $(X)$, with a filter blob $(filter)$ and a bias blob $(bias)$, and outputs a single output blob $(Y)$. Although there are several options for order, the convention is that the input $(X)$ is a blob of shape $(N,C_{in},H_{in},W_{in})$ and the output $(Y)$ is a blob of shape $(N,C_{out},H_{out},W_{out})$. Here, $N$ is the batch size, $C$ is the number of channels, $H$ is the spatial height, and $W$ is the spatial width. For example, if your input data was a batch of five, 100x120pixel RGB images, $X$ would have shape $(5,3,120,100)$.
The $filter$ input blob may contain multiple filters and has shape $(M, C_{in}, K_H, K_W)$. Here, $M$ is the number of individual filters contained in the blob, $C_{in}$ is the number of channels of each filter (by convention in 2D convolution it is the same as the number of channels in the input), $K_H$ is the spatial height of the kernel, and $K_W$ is the spatial width of the kernel. The $bias$ blob is a vector of length $M$, where there is one bias for each filter in the $filter$ blob.
Given the shape of the input blob and the filter blob, we can calculate the shape of the output blob as follows. The number of items in the batch $N$ will stay the same. The number of channels in the output will equal the number of kernels in the filter blob, so $C_{out} = M.$ With stride and pad defined below, the spatial height and width of the output ($H_{out}$ and $W_{out}$) are calculated as
$$H_{out} = \left \lfloor{\frac{H_{in} - K_H + 2*pad}{stride}+1}\right \rfloor$$
$$W_{out} = \left \lfloor{\frac{W_{in} - K_W + 2*pad}{stride}+1}\right \rfloor$$
Github Links:
- https://github.com/pytorch/pytorch/blob/master/caffe2/operators/conv_op.h
- https://github.com/pytorch/pytorch/blob/master/caffe2/operators/conv_op.cc
- https://github.com/pytorch/pytorch/blob/master/caffe2/operators/conv_pool_op_base.h
<details>
<summary> <b>Example</b> </summary>
**Code**
```
workspace.ResetWorkspace()
op = core.CreateOperator(
"Conv",
["X", "filter", "bias"],
["Y"],
kernel=5,
pad=1,
stride=2
)
// Create X: (N,C,H,W)
data = np.random.randn(1,1,8,8).astype(np.float32)
print("Data shape: ",data.shape)
// Create W: (M,C,Kh,Kw)
filters = np.random.randn(3,1,5,5).astype(np.float32)
print("Filter shape: ",filters.shape)
// Create b: M
bias = np.array([1.,1.,1.]).astype(np.float32)
print("Bias shape: ",bias.shape)
// Put the inputs into the workspace
workspace.FeedBlob("X", data)
workspace.FeedBlob("filter", filters)
workspace.FeedBlob("bias", bias)
// Run the operator
workspace.RunOperatorOnce(op)
print("Y:\n", workspace.FetchBlob("Y"))
```
**Result**
```
Data shape: (1, 1, 8, 8)
Filter shape: (3, 1, 5, 5)
Bias shape: (3,)
Y:
[[[[ 0.6406407 0.8620521 0.56461596]
[ -1.5042953 -0.79549205 -10.683343 ]
[ -0.5240259 3.4538248 -3.9564204 ]]
[[ 0.6876496 4.8328524 -1.9525816 ]
[ 1.2995434 -2.3895378 7.2670045 ]
[ 3.9929862 1.8126237 5.4699917 ]]
[[ 3.55949 4.7934155 0.76086235]
[ 3.9588015 -1.3251319 4.413117 ]
[ -1.5296054 -1.4924102 -3.2552304 ]]]]
```
</details>
)DOC";
std::function<void(OpSchema&)> ConvDocGenerator(const char* dim) {
return [=](OpSchema& schema) {
string doc = R"DOC(
The convolution operator consumes an input vector, a {dim}filter blob
and a bias blob and computes the output. {conv_doc})DOC";
c10::ReplaceAll(doc, "{dim}", dim);
c10::ReplaceAll(doc, "{conv_doc}", kConvDoc);
schema.SetDoc(doc);
schema.Input(
0,
"X",
"Input data blob, of shape $(N, C_{in}, H_{in}, W_{in})$, to be convolved with the kernels in the filter blob."
);
schema.Input(
1,
"filter",
"The filter blob, of shape $(M, C_{in}, K_H, K_W)$, containing the filters to be convolved with the data."
);
schema.Input(
2,
"bias",
"The bias blob, of length $M$, containing the biases for the convolution, one bias per filter."
);
schema.Output(
0,
"Y",
"Output data blob, of shape $(N, C_{out}, H_{out}, W_{out})$, that contains the result of the convolution."
);
/*
schema.Arg(
"kernel",
"*(type: int; default: 0)* Desired kernel size. If left at default the kernel size will be inferred from the input $filter$ blob.",
0
);
schema.Arg(
"stride",
"*(type: int; default: 1)* Controls the stride of the kernel as it traverses the input blob.",
0
);
schema.Arg(
"dilation",
"*(type: int; default: 1)* Controls spacing between kernel points. If dilation is greater than one, the kernel does not operate on a contiguous spatial region. For a visualization click [here](https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md).",
0
);
schema.Arg(
"pad",
"*(type: int; default: 0)* Controls the amount of padding to apply to the input feature map before computing the convolution.",
0
);
schema.Arg(
"float16_compute",
"*(type: bool; default: False)* Whether to use float-16 compute kernel.",
0
);
schema.Arg(
"group",
"*(type: int; default: 1)* Controls level of group convolution. For more info click [here](https://blog.yani.io/filter-group-tutorial/).",
0
);
schema.Arg(
"order",
"*(type: string; default: \"NCHW\")* Specifies the order of the input data blob, where $N$ is batch size, $C$ is number of channels, $H$ is spatial height, and $W$ is spatial width. The only other valid option is \"NHWC\".",
0
);
schema.Arg(
"shared_buffer",
"*(type: int; default: 0)*",
0
);
*/
};
}
REGISTER_CPU_OPERATOR(Conv, ConvOp<float, CPUContext>);
OPERATOR_SCHEMA(Conv)
.NumInputs(2, 3)
.NumOutputs(1)
.TensorInferenceFunction(ConvPoolOpBase<CPUContext>::TensorInferenceForConv)
.CostInferenceFunction(OpSchema::CostInferenceFunctionType(
ConvPoolOpBase<CPUContext>::CostInferenceForConv))
.FillUsing(ConvDocGenerator(""))
.InheritOnnxSchema();
REGISTER_CPU_OPERATOR(Conv1D, ConvOp<float, CPUContext>);
OPERATOR_SCHEMA(Conv1D)
.NumInputs(2, 3)
.NumOutputs(1)
.TensorInferenceFunction(ConvPoolOpBase<CPUContext>::TensorInferenceForConv)
.FillUsing(ConvDocGenerator("1D "))
.InheritOnnxSchema("Conv");
REGISTER_CPU_OPERATOR(Conv2D, ConvOp<float, CPUContext>);
OPERATOR_SCHEMA(Conv2D)
.NumInputs(2, 3)
.NumOutputs(1)
.CostInferenceFunction(OpSchema::CostInferenceFunctionType(
ConvPoolOpBase<CPUContext>::CostInferenceForConv))
.TensorInferenceFunction(ConvPoolOpBase<CPUContext>::TensorInferenceForConv)
.FillUsing(ConvDocGenerator("2D "))
.InheritOnnxSchema("Conv");
REGISTER_CPU_OPERATOR(Conv3D, ConvOp<float, CPUContext>);
OPERATOR_SCHEMA(Conv3D)
.NumInputs(2, 3)
.NumOutputs(1)
.CostInferenceFunction(OpSchema::CostInferenceFunctionType(
ConvPoolOpBase<CPUContext>::CostInferenceForConv))
.TensorInferenceFunction(ConvPoolOpBase<CPUContext>::TensorInferenceForConv)
.FillUsing(ConvDocGenerator("3D "))
.InheritOnnxSchema("Conv");
} // namespace caffe2
|