1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
|
#ifndef CAFFE2_OPERATORS_CONV_POOL_OP_BASE_H_
#define CAFFE2_OPERATORS_CONV_POOL_OP_BASE_H_
#include <c10/util/irange.h>
#include "caffe2/core/context.h"
#include "caffe2/core/logging.h"
#include "caffe2/core/operator.h"
#include "caffe2/core/types.h"
#include "caffe2/proto/caffe2_legacy.pb.h"
#include "caffe2/utils/math.h"
#include <algorithm>
#include <vector>
// This macro is here just to allow us to experiment with padding values that
// determines, when we have an odd number of pads, which side gets the one
// additional pad value, the head side, or the tail side. Setting it to false
// will enable the TensorFlow behavior, and setting it to true will enable
// a behavior more consistent with Caffe and CuDNN.
// This only affects the case when you set legacy pad to VALID or SAME. The
// behavior inherits from the early designs of Google's CNN implementation,
// where padding values are implicitly calculated instead of explicitly
// specified. This is still the case with TensorFlow. Many frameworks have
// followed a slightly different approach of explicitly giving padding values,
// in which case the value of this constant value does not matter.
const bool CAFFE2_PAD_HEAD_MORE = false;
namespace caffe2 {
template <class Context>
class ConvPoolOpBase : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
explicit ConvPoolOpBase(const OperatorDef& operator_def, Workspace* ws)
: Operator<Context>(operator_def, ws),
legacy_pad_(
static_cast<LegacyPadding>(this->template GetSingleArgument<int>(
"legacy_pad",
LegacyPadding::NOTSET))),
global_pooling_(
this->template GetSingleArgument<int>("global_pooling", 0)),
kernel_(this->template GetRepeatedArgument<int>("kernels")),
dilation_(this->template GetRepeatedArgument<int>("dilations")),
stride_(this->template GetRepeatedArgument<int>("strides")),
pads_(this->template GetRepeatedArgument<int>("pads")),
float16_compute_(
this->template GetSingleArgument<bool>("float16_compute", false)),
group_(this->template GetSingleArgument<int>("group", 1)),
order_(StringToStorageOrder(
this->template GetSingleArgument<string>("order", "NCHW"))),
shared_buffer_(
this->template GetSingleArgument<int>("shared_buffer", 0)),
ws_(ws) {
// For the padding, they should either be the legacy padding strategy
// (VALID or SAME), or an explicit, non-negative value.
if (legacy_pad_ == LegacyPadding::VALID ||
legacy_pad_ == LegacyPadding::SAME) {
CAFFE_ENFORCE(
!OperatorBase::HasArgument("pads"),
"If you use legacy padding VALID or SAME, you should not specify "
"any specific padding values.");
}
// Get old arguments values.
if (OperatorBase::HasArgument("kernel")) {
kernel_.resize(2, this->template GetSingleArgument<int>("kernel", 0));
} else if (
OperatorBase::HasArgument("kernel_h") &&
OperatorBase::HasArgument("kernel_w")) {
kernel_.push_back(this->template GetSingleArgument<int>("kernel_h", 0));
kernel_.push_back(this->template GetSingleArgument<int>("kernel_w", 0));
}
if (OperatorBase::HasArgument("stride")) {
stride_.resize(2, this->template GetSingleArgument<int>("stride", 0));
} else if (
OperatorBase::HasArgument("stride_h") &&
OperatorBase::HasArgument("stride_w")) {
stride_.push_back(this->template GetSingleArgument<int>("stride_h", 0));
stride_.push_back(this->template GetSingleArgument<int>("stride_w", 0));
}
if (OperatorBase::HasArgument("dilation")) {
dilation_.resize(2, this->template GetSingleArgument<int>("dilation", 0));
} else if (
OperatorBase::HasArgument("dilation_h") &&
OperatorBase::HasArgument("dilation_w")) {
dilation_.push_back(
this->template GetSingleArgument<int>("dilation_h", 0));
dilation_.push_back(
this->template GetSingleArgument<int>("dilation_w", 0));
}
if (OperatorBase::HasArgument("pad")) {
CAFFE_ENFORCE(
legacy_pad_ != LegacyPadding::VALID &&
legacy_pad_ != LegacyPadding::SAME,
"If you use legacy padding VALID or SAME, you should not specify "
"any specific padding values.");
pads_.resize(4, this->template GetSingleArgument<int>("pad", 0));
} else if (
OperatorBase::HasArgument("pad_t") &&
OperatorBase::HasArgument("pad_l") &&
OperatorBase::HasArgument("pad_b") &&
OperatorBase::HasArgument("pad_r")) {
CAFFE_ENFORCE(
legacy_pad_ != LegacyPadding::VALID &&
legacy_pad_ != LegacyPadding::SAME,
"If you use legacy padding VALID or SAME, you should not specify "
"any specific padding values.");
pads_.push_back(this->template GetSingleArgument<int>("pad_t", 0));
pads_.push_back(this->template GetSingleArgument<int>("pad_l", 0));
pads_.push_back(this->template GetSingleArgument<int>("pad_b", 0));
pads_.push_back(this->template GetSingleArgument<int>("pad_r", 0));
}
// Fill default values.
if (kernel_.size() == 0) {
kernel_.assign({0, 0});
}
if (stride_.size() == 0) {
stride_.resize(kernel_.size(), 1);
}
if (pads_.size() == 0) {
pads_.resize(kernel_.size() * 2, 0);
}
if (dilation_.size() == 0) {
dilation_.resize(kernel_.size(), 1);
}
CAFFE_ENFORCE_EQ(stride_.size(), kernel_.size());
CAFFE_ENFORCE_EQ(dilation_.size(), kernel_.size());
if (legacy_pad_ != LegacyPadding::VALID &&
legacy_pad_ != LegacyPadding::SAME) {
CAFFE_ENFORCE_EQ(pads_.size(), 2 * kernel_.size());
}
if (global_pooling_) {
for (const auto dim : c10::irange(kernel_.size())) {
CAFFE_ENFORCE(
pads_[2 * dim] == 0 && pads_[2 * dim + 1] == 0 &&
dilation_[dim] == 1 && stride_[dim] == 1,
"If global_pooling is set pad, dilation and stride shouldn't be set.");
}
}
// Check kernel only if we are doing conv or pooling. The reason is that a
// few other ops, like PadImage, are also using this base class. We really
// need to clean this up.
if (operator_def.name().find("Conv") == 0 ||
operator_def.name().find("Pool") != std::string::npos) {
for (const auto dim : c10::irange(kernel_.size())) {
CAFFE_ENFORCE_GE(pads_[dim], 0);
CAFFE_ENFORCE_GE(pads_[kernel_.size() + dim], 0);
CAFFE_ENFORCE(
kernel_[dim],
"If you are doing convolution or pooling, you will need to set "
"explicitly the kernel size.");
}
}
for (const auto dim : c10::irange(kernel_.size())) {
CAFFE_ENFORCE_GE(kernel_[dim], 0);
CAFFE_ENFORCE_GE(dilation_[dim], 0);
CAFFE_ENFORCE_GE(stride_[dim], 0);
}
}
// Returns the input image dimensions for the current storage order type.
vector<int> GetDims(const Tensor& input) {
vector<int> dims;
switch (order_) {
case StorageOrder::NCHW:
dims.assign(input.sizes().begin() + 2, input.sizes().end());
break;
case StorageOrder::NHWC:
dims.assign(input.sizes().begin() + 1, input.sizes().end() - 1);
break;
default:
CAFFE_THROW("Unknown storage order : ", order_);
}
return dims;
}
// Returns the size of the input image for the current storage type.
int GetDimsSize(const Tensor& input) {
int size = 0;
switch (order_) {
case StorageOrder::NCHW:
size = std::accumulate(
input.sizes().begin() + 2,
input.sizes().end(),
1,
std::multiplies<int>());
break;
case StorageOrder::NHWC:
size = std::accumulate(
input.sizes().begin() + 1,
input.sizes().end() - 1,
1,
std::multiplies<int>());
break;
default:
CAFFE_THROW("Unknown storage order : ", order_);
}
return size;
}
// Gets the output size. The output channel is manually provided since
// it may not be identical to the input channels.
// This function can be used in the forward functions to obtain the output
// sizes.
// Note(jiayq): the templatization of this function is mainly to help
// implementations that do not use first-class Tensor objects, such as the
// MKL operator. One can still call this function with dummy
// Tensor objects in order to obtain the sizes.
std::vector<int64_t> GetOutputSize(const Tensor& input, int output_channel) {
CAFFE_ENFORCE_GE(input.dim(), 2);
const int inner_size = input.size_from_dim(1);
CAFFE_ENFORCE_GT(inner_size, 0);
std::vector<int64_t> output_dims;
InferOutputSize64(
input.sizes(),
output_channel,
order_,
global_pooling_,
legacy_pad_,
dilation_,
stride_,
&kernel_,
&pads_,
&output_dims);
return output_dims;
}
void SetOutputSize(const Tensor& input, Tensor* output, int output_channel) {
const int inner_size = input.size_from_dim(1);
CAFFE_ENFORCE_GT(inner_size, 0);
std::vector<int> output_dims;
InferOutputSize(
input.sizes(),
output_channel,
order_,
global_pooling_,
legacy_pad_,
dilation_,
stride_,
&kernel_,
&pads_,
&output_dims);
output->Resize(output_dims);
}
// Helper function that is also called from OperatorSchema. Modified
// kernel parameters and output output_dims and channel_first.
static void InferOutputSize(
const at::IntArrayRef& input_dims,
const int output_channel,
const StorageOrder order,
const bool global_pooling,
const LegacyPadding legacy_pad,
const std::vector<int>& dilation,
const std::vector<int>& stride,
std::vector<int>* kernel,
std::vector<int>* pads,
std::vector<int>* output_dims) {
CAFFE_ENFORCE_NE(order, StorageOrder::UNKNOWN);
const int ndim = input_dims.size() - 2;
output_dims->resize(ndim + 2);
output_dims->front() = input_dims.front();
if (order == StorageOrder::NCHW) {
output_dims->at(1) = output_channel;
} else {
output_dims->back() = output_channel;
}
const int offset = order == StorageOrder::NCHW ? 2 : 1;
if (global_pooling) {
std::copy_n(input_dims.cbegin() + offset, ndim, kernel->begin());
std::fill_n(output_dims->begin() + offset, ndim, 1LL);
} else {
for (const auto i : c10::irange(ndim)) {
ComputeSizeAndPad(
input_dims[i + offset],
stride[i],
kernel->at(i),
dilation[i],
legacy_pad,
&pads->at(i),
&pads->at(i + ndim),
&output_dims->at(i + offset));
}
}
}
static void InferOutputSize64(
const at::IntArrayRef& input_dims,
const int output_channel,
const StorageOrder order,
const bool global_pooling,
const LegacyPadding legacy_pad,
const std::vector<int>& dilation,
const std::vector<int>& stride,
std::vector<int>* kernel,
std::vector<int>* pads,
std::vector<int64_t>* output_dims) {
CAFFE_ENFORCE_NE(order, StorageOrder::UNKNOWN);
const int ndim = input_dims.size() - 2;
output_dims->resize(ndim + 2);
output_dims->front() = input_dims.front();
if (order == StorageOrder::NCHW) {
output_dims->at(1) = output_channel;
} else {
output_dims->back() = output_channel;
}
const int offset = order == StorageOrder::NCHW ? 2 : 1;
if (global_pooling) {
std::copy_n(input_dims.cbegin() + offset, ndim, kernel->begin());
std::fill_n(output_dims->begin() + offset, ndim, 1LL);
} else {
for (const auto i : c10::irange(ndim)) {
ComputeSizeAndPad64(
input_dims[i + offset],
stride[i],
kernel->at(i),
dilation[i],
legacy_pad,
&pads->at(i),
&pads->at(i + ndim),
&output_dims->at(i + offset));
}
}
}
// ComputePads could be used in backward functions to figure out the padding
// values for the given input.
void ComputePads(const vector<int>& dims) {
if (global_pooling_) {
kernel_ = dims;
} else if (legacy_pad_ != LegacyPadding::NOTSET) {
int output_unused;
// NOLINTNEXTLINE(clang-diagnostic-sign-compare)
for (const auto dim : c10::irange(dims.size())) {
ComputeSizeAndPad(
dims[dim],
stride_[dim],
kernel_[dim],
dilation_[dim],
legacy_pad_,
&pads_[dim],
&pads_[dims.size() + dim],
&output_unused);
}
}
}
bool HasPad() const {
if (kernel_.size() == 2) {
return pad_t() > 0 || pad_b() > 0 || pad_l() > 0 || pad_r() > 0;
}
return std::any_of(
pads_.cbegin(), pads_.cend(), [](const int x) { return x > 0; });
}
bool HasStride() const {
if (kernel_.size() == 2) {
return stride_h() > 1 || stride_w() > 1;
}
return std::any_of(
stride_.cbegin(), stride_.cend(), [](const int x) { return x > 1; });
}
void SetDeviceTensor(const std::vector<int>& data, Tensor* tensor) {
bool reset_tensor_device_ = false;
// NOLINTNEXTLINE(clang-diagnostic-sign-compare)
if (tensor->numel() != data.size()) {
tensor->Resize(data.size());
reset_tensor_device_ = true;
} else {
const int* tensor_data = tensor->template data<int>();
for (const auto d_i : c10::irange(data.size())) {
if (tensor_data[d_i] != data[d_i]) {
reset_tensor_device_ = true;
break;
}
}
}
if (reset_tensor_device_) {
context_.template Copy<int, CPUContext, Context>(
data.size(), data.data(), tensor->template mutable_data<int>());
}
}
template <typename T>
void SetBiasMultiplier(const int size, Tensor* bias_multiplier_) {
if (bias_multiplier_->numel() != size) {
// If the helper bias multiplier is not image size, reshape and fill it
// with one.
bias_multiplier_->Resize(std::vector<int64_t>{size});
math::Set<T, Context>(
size,
static_cast<T>(1),
bias_multiplier_->template mutable_data<T>(),
&context_);
}
}
bool RunOnDevice() override {
if (!global_pooling_) {
for (const auto dim : c10::irange(kernel_.size())) {
CAFFE_ENFORCE_GT(kernel_[dim], 0);
}
}
switch (order_) {
case StorageOrder::NHWC:
// VLOG(2) << "Running NHWC";
return RunOnDeviceWithOrderNHWC();
case StorageOrder::NCHW:
// VLOG(2) << "Running NCHW";
return RunOnDeviceWithOrderNCHW();
default:
CAFFE_THROW("Unknown Storage order: ", order_);
}
}
// The actual function that does the computation, if the different
// storage order leads to different implementations.
virtual bool RunOnDeviceWithOrderNHWC() {
CAFFE_NOT_IMPLEMENTED;
}
virtual bool RunOnDeviceWithOrderNCHW() {
CAFFE_NOT_IMPLEMENTED;
}
static struct OpSchema::Cost CostInferenceForConv(
const OperatorDef& def,
const vector<TensorShape>& inputs) {
CAFFE_ENFORCE_GE(inputs.size(), 2, "Conv requires at least 2 inputs");
struct OpSchema::Cost c;
const TensorShape X = inputs[0];
const TensorShape W = inputs[1];
const TensorShape Y = TensorInferenceForConv(def, inputs)[0];
ArgumentHelper helper(def);
const auto order =
StringToStorageOrder(helper.GetSingleArgument<string>("order", "NCHW"));
uint64_t N;
uint64_t Y_h;
uint64_t Y_w = 1;
uint64_t Y_t = 1;
uint64_t kernel_h;
uint64_t kernel_w = 1;
uint64_t kernel_t = 1;
uint64_t in_channels;
uint64_t out_channels;
if (X.dims_size() == 0 || W.dims_size() == 0) {
return c;
}
N = X.dims(0);
if (X.dims_size() == 5) {
// 3D convolution
if (order == StorageOrder::NHWC) {
Y_t = Y.dims(1);
Y_h = Y.dims(2);
Y_w = Y.dims(3);
kernel_t = W.dims(1);
kernel_h = W.dims(2);
kernel_w = W.dims(3);
in_channels = W.dims(4);
out_channels = W.dims(0);
} else {
Y_t = Y.dims(2);
Y_h = Y.dims(3);
Y_w = Y.dims(4);
kernel_t = W.dims(2);
kernel_h = W.dims(3);
kernel_w = W.dims(4);
in_channels = W.dims(1);
out_channels = W.dims(0);
}
} else if (X.dims_size() == 4) {
// 2D convolution
CAFFE_ENFORCE_EQ(W.dims_size(), 4, "Conv2D should have 4D filter tensor");
if (order == StorageOrder::NHWC) {
Y_h = Y.dims(1);
Y_w = Y.dims(2);
kernel_h = W.dims(1);
kernel_w = W.dims(2);
in_channels = W.dims(3);
out_channels = W.dims(0);
} else {
Y_h = Y.dims(2);
Y_w = Y.dims(3);
kernel_h = W.dims(2);
kernel_w = W.dims(3);
in_channels = W.dims(1);
out_channels = W.dims(0);
}
} else {
// 1D convolution
CAFFE_ENFORCE_EQ(W.dims_size(), 3, "Conv1D should have 3D filter tensor");
if (order == StorageOrder::NHWC) {
Y_h = Y.dims(1);
kernel_h = W.dims(1);
in_channels = W.dims(2);
out_channels = W.dims(0);
} else {
Y_h = Y.dims(2);
kernel_h = W.dims(2);
in_channels = W.dims(1);
out_channels = W.dims(0);
}
}
uint64_t nElemX = nElemFromDim(X);
uint64_t nElemW = nElemFromDim(W);
uint64_t nElemBias = inputs.size() > 2 ? nElemFromDim(inputs[2]) : 0;
auto const& X_elemenet_size_byte =
DataTypeToTypeMeta(X.data_type()).itemsize();
auto const& Y_element_size_byte =
DataTypeToTypeMeta(Y.data_type()).itemsize();
auto const& W_element_size_byte =
DataTypeToTypeMeta(W.data_type()).itemsize();
// grouping is NOT properly handled yet
c.flops = N * Y_t * Y_h * Y_w * kernel_t * kernel_w * kernel_h *
in_channels * out_channels * 2;
c.bytes_read = (nElemX + nElemW + nElemBias) * X_elemenet_size_byte;
c.bytes_written = N * out_channels * Y_t * Y_h * Y_w * Y_element_size_byte;
c.params_bytes = out_channels * in_channels * kernel_t * kernel_h *
kernel_w * W_element_size_byte;
return c;
}
static vector<TensorShape> TensorInferenceForSchema(
const OperatorDef& def,
const vector<TensorShape>& in,
int output_channel) {
ArgumentHelper helper(def);
CAFFE_ENFORCE_GT(in.size(), 0U);
CAFFE_ENFORCE_GT(in[0].dims_size(), 0);
vector<int> pads = helper.GetRepeatedArgument<int>("pads");
vector<int> kernel = helper.GetRepeatedArgument<int>("kernels");
vector<int> strides = helper.GetRepeatedArgument<int>("strides");
vector<int> dilations = helper.GetRepeatedArgument<int>("dilation");
if (helper.HasArgument("pad")) {
pads.resize(4, helper.GetSingleArgument<int>("pad", 0));
} else if (
helper.HasArgument("pad_t") && helper.HasArgument("pad_l") &&
helper.HasArgument("pad_b") && helper.HasArgument("pad_r")) {
pads.push_back(helper.GetSingleArgument<int>("pad_t", 0));
pads.push_back(helper.GetSingleArgument<int>("pad_l", 0));
pads.push_back(helper.GetSingleArgument<int>("pad_b", 0));
pads.push_back(helper.GetSingleArgument<int>("pad_r", 0));
}
if (helper.HasArgument("kernel")) {
kernel.resize(2, helper.GetSingleArgument<int>("kernel", 1));
} else if (
helper.HasArgument("kernel_h") && helper.HasArgument("kernel_w")) {
kernel.push_back(helper.GetSingleArgument<int>("kernel_h", 1));
kernel.push_back(helper.GetSingleArgument<int>("kernel_w", 1));
}
if (helper.HasArgument("stride")) {
strides.resize(2, helper.GetSingleArgument<int>("stride", 1));
} else if (
helper.HasArgument("stride_h") && helper.HasArgument("stride_w")) {
strides.push_back(helper.GetSingleArgument<int>("stride_h", 1));
strides.push_back(helper.GetSingleArgument<int>("stride_w", 1));
}
if (helper.HasArgument("dilation")) {
strides.resize(2, helper.GetSingleArgument<int>("dilation", 1));
} else if (
helper.HasArgument("dilation_h") && helper.HasArgument("dilation_w")) {
strides.push_back(helper.GetSingleArgument<int>("dilation_h", 1));
strides.push_back(helper.GetSingleArgument<int>("dilation_w", 1));
}
auto check_and_set_default_value =
[](vector<int>& vec, int size, int value) {
if (vec.size() == 0) {
vec.resize(size, value);
}
};
check_and_set_default_value(kernel, 2, 1);
check_and_set_default_value(strides, kernel.size(), 1);
check_and_set_default_value(pads, kernel.size() * 2, 0);
check_and_set_default_value(dilations, kernel.size(), 1);
std::vector<int> output_dims;
ConvPoolOpBase<CPUContext>::InferOutputSize(
GetDimsVector(in[0]),
output_channel,
StringToStorageOrder(helper.GetSingleArgument<string>("order", "NCHW")),
helper.GetSingleArgument<int>("global_pooling", 0),
static_cast<LegacyPadding>(
helper.GetSingleArgument<int>("legacy_pad", LegacyPadding::NOTSET)),
dilations,
strides,
&kernel,
&pads,
&output_dims);
return {CreateTensorShape(output_dims, TensorProto::FLOAT)};
}
static std::vector<TensorShape> TensorInferenceForConv(
const OperatorDef& def,
const std::vector<TensorShape>& in) {
if (in[0].unknown_shape()) {
std::vector<TensorShape> out(1);
out[0].set_unknown_shape(true);
return out;
}
return TensorInferenceForSchema(def, in, in[1].dims(0));
}
static std::vector<TensorShape> TensorInferenceForPool(
const OperatorDef& def,
const std::vector<TensorShape>& in) {
if (in[0].unknown_shape()) {
std::vector<TensorShape> out(1);
out[0].set_unknown_shape(true);
return out;
}
ArgumentHelper helper(def);
auto order =
StringToStorageOrder(helper.GetSingleArgument<string>("order", "NCHW"));
int num_channels =
(order == StorageOrder::NCHW ? in[0].dims(1) : in[0].dims(3));
return TensorInferenceForSchema(def, in, num_channels);
}
static std::vector<TensorShape> TensorInferenceForLC(
const OperatorDef& def,
const std::vector<TensorShape>& in) {
if (in[0].unknown_shape()) {
std::vector<TensorShape> out(1);
out[0].set_unknown_shape(true);
return out;
}
const int img_ndim = in[0].dims_size() - 2;
return TensorInferenceForSchema(def, in, in[1].dims(img_ndim));
}
virtual ~ConvPoolOpBase() {}
protected:
LegacyPadding legacy_pad_;
bool global_pooling_;
vector<int> kernel_;
vector<int> dilation_;
vector<int> stride_;
vector<int> pads_;
bool float16_compute_;
int group_;
StorageOrder order_;
bool shared_buffer_;
Workspace* ws_;
static inline void ComputeSizeAndPad(
const int in_size,
const int stride,
const int kernel,
const int dilation,
LegacyPadding legacy_pad,
int* pad_head,
int* pad_tail,
int* out_size) {
const int dkernel = dilation * (kernel - 1) + 1;
switch (legacy_pad) {
case LegacyPadding::NOTSET:
// We will just use the direct padding head and tail values, but we
// will verify that they are non-negative.
CAFFE_ENFORCE_GE(in_size + *pad_head + *pad_tail, dkernel);
*out_size = static_cast<int>(
static_cast<float>(in_size + *pad_head + *pad_tail - dkernel) /
stride +
1);
break;
case LegacyPadding::VALID:
*pad_head = 0;
*pad_tail = 0;
*out_size = (in_size - dkernel) / stride + 1;
break;
case LegacyPadding::SAME: {
CAFFE_ENFORCE(
1 == dilation, "Dilation not supported for legacy padding.");
int legacy_target_size = (in_size + stride - 1) / stride;
int pad_needed = (legacy_target_size - 1) * stride + kernel - in_size;
if (CAFFE2_PAD_HEAD_MORE) {
*pad_head = (pad_needed + 1) / 2;
} else {
*pad_head = pad_needed / 2;
}
*pad_tail = pad_needed - *pad_head;
*out_size = (in_size + pad_needed - dkernel) / stride + 1;
break;
}
case LegacyPadding::CAFFE_LEGACY_POOLING:
// This is in order to adapt Caffe's pooling padding case. In this case,
// we will only use pad_head and will compute pad_tail to match the
// old caffe pooling strategy. Also see caffe2_legacy.proto for more
// details.
CAFFE_ENFORCE_GE(*pad_head, 0);
// Here, notice that caffe casts UP while caffe2 casts DOWN for the
// output size computation.
*out_size = std::ceil(
static_cast<float>(in_size + *pad_head * 2 - kernel) / stride + 1);
// If we have padding, caffe also ensures that the last pooling starts
// strictly inside the image (instead of at the padding); otherwise clip
// the last.
if (*pad_head > 0 && (*out_size - 1) * stride >= in_size + *pad_head) {
--*out_size;
}
// Now, compare the output size with the standard Caffe2 output size.
// The
// caffe2 standard output size should always be no larger than the
// output
// size of caffe.
int standard_out_size = static_cast<int>(
static_cast<float>(in_size + *pad_head * 2 - kernel) / stride + 1);
CAFFE_ENFORCE_GE(
*out_size,
standard_out_size,
"This should never happen. If this happens, double check the logic "
"above.");
if (*out_size > standard_out_size) {
LOG(WARNING)
<< "You are hitting a case where Caffe's legacy padding calculation "
"is hit. This leads to inefficient and sometimes incorrect "
"results. We are keeping this behavior for backward compatibility"
", but you are strongly recommended to move away from it.";
}
*pad_tail = *pad_head + stride * (*out_size - standard_out_size);
break;
}
}
static inline void ComputeSizeAndPad64(
const int in_size,
const int stride,
const int kernel,
const int dilation,
LegacyPadding legacy_pad,
int* pad_head,
int* pad_tail,
int64_t* out_size) {
const int dkernel = dilation * (kernel - 1) + 1;
switch (legacy_pad) {
case LegacyPadding::NOTSET:
// We will just use the direct padding head and tail values, but we
// will verify that they are non-negative.
CAFFE_ENFORCE_GE(in_size + *pad_head + *pad_tail, dkernel);
*out_size = static_cast<int>(
static_cast<float>(in_size + *pad_head + *pad_tail - dkernel) /
stride +
1);
break;
case LegacyPadding::VALID:
*pad_head = 0;
*pad_tail = 0;
*out_size = (in_size - dkernel) / stride + 1;
break;
case LegacyPadding::SAME: {
CAFFE_ENFORCE(
1 == dilation, "Dilation not supported for legacy padding.");
int legacy_target_size = (in_size + stride - 1) / stride;
int pad_needed = (legacy_target_size - 1) * stride + kernel - in_size;
if (CAFFE2_PAD_HEAD_MORE) {
*pad_head = (pad_needed + 1) / 2;
} else {
*pad_head = pad_needed / 2;
}
*pad_tail = pad_needed - *pad_head;
*out_size = (in_size + pad_needed - dkernel) / stride + 1;
break;
}
case LegacyPadding::CAFFE_LEGACY_POOLING:
// This is in order to adapt Caffe's pooling padding case. In this case,
// we will only use pad_head and will compute pad_tail to match the
// old caffe pooling strategy. Also see caffe2_legacy.proto for more
// details.
CAFFE_ENFORCE_GE(*pad_head, 0);
// Here, notice that caffe casts UP while caffe2 casts DOWN for the
// output size computation.
*out_size = std::ceil(
static_cast<float>(in_size + *pad_head * 2 - kernel) / stride + 1);
// If we have padding, caffe also ensures that the last pooling starts
// strictly inside the image (instead of at the padding); otherwise clip
// the last.
if (*pad_head > 0 && (*out_size - 1) * stride >= in_size + *pad_head) {
--*out_size;
}
// Now, compare the output size with the standard Caffe2 output size.
// The
// caffe2 standard output size should always be no larger than the
// output
// size of caffe.
int standard_out_size = static_cast<int>(
static_cast<float>(in_size + *pad_head * 2 - kernel) / stride + 1);
CAFFE_ENFORCE_GE(
*out_size,
standard_out_size,
"This should never happen. If this happens, double check the logic "
"above.");
if (*out_size > standard_out_size) {
LOG(WARNING)
<< "You are hitting a case where Caffe's legacy padding calculation "
"is hit. This leads to inefficient and sometimes incorrect "
"results. We are keeping this behavior for backward compatibility"
", but you are strongly recommended to move away from it.";
}
*pad_tail = *pad_head + stride * (*out_size - standard_out_size);
break;
}
}
// Accessors for 2D conv params.
inline int pad_t() const {
return pads_[0];
}
inline int pad_l() const {
return pads_[1];
}
inline int pad_b() const {
return pads_[2];
}
inline int pad_r() const {
return pads_[3];
}
inline int kernel_h() const {
return kernel_[0];
}
inline int kernel_w() const {
return kernel_[1];
}
inline int stride_h() const {
return stride_[0];
}
inline int stride_w() const {
return stride_[1];
}
inline int dilation_h() const {
return dilation_[0];
}
inline int dilation_w() const {
return dilation_[1];
}
private:
inline void AllocateAndCopy(const vector<int>& vec, Tensor& tensor) {
tensor.Resize(vec.size());
context_.template CopyFromCPU<int>(
vec.size(), vec.data(), tensor.template mutable_data<int>());
}
#define USE_CONV_POOL_BASE_FUNCTIONS(Context) \
USE_OPERATOR_FUNCTIONS(Context); \
using ConvPoolOpBase<Context>::pads_; \
using ConvPoolOpBase<Context>::pad_t; \
using ConvPoolOpBase<Context>::pad_l; \
using ConvPoolOpBase<Context>::pad_b; \
using ConvPoolOpBase<Context>::pad_r; \
using ConvPoolOpBase<Context>::legacy_pad_; \
using ConvPoolOpBase<Context>::global_pooling_; \
using ConvPoolOpBase<Context>::kernel_; \
using ConvPoolOpBase<Context>::kernel_h; \
using ConvPoolOpBase<Context>::kernel_w; \
using ConvPoolOpBase<Context>::dilation_; \
using ConvPoolOpBase<Context>::dilation_h; \
using ConvPoolOpBase<Context>::dilation_w; \
using ConvPoolOpBase<Context>::stride_; \
using ConvPoolOpBase<Context>::stride_h; \
using ConvPoolOpBase<Context>::stride_w; \
using ConvPoolOpBase<Context>::group_; \
using ConvPoolOpBase<Context>::order_; \
using ConvPoolOpBase<Context>::shared_buffer_; \
using ConvPoolOpBase<Context>::GetDims; \
using ConvPoolOpBase<Context>::GetDimsSize; \
using ConvPoolOpBase<Context>::SetDeviceTensor; \
using ConvPoolOpBase<Context>::HasPad; \
using ConvPoolOpBase<Context>::HasStride; \
using ConvPoolOpBase<Context>::ws_
};
} // namespace caffe2
#endif // CAFFE2_OPERATORS_CONV_POOL_OP_BASE_H_
|