1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
|
#include "caffe2/core/init.h"
#include "caffe2/core/operator.h"
#include "caffe2/core/tensor.h"
#include "caffe2/utils/math.h"
#include "caffe2/utils/proto_utils.h"
#include "gtest/gtest.h"
#include <cmath>
#include <random>
namespace caffe2 {
void AddConstInput(const vector<int64_t>& shape,
const float value,
const string& name,
Workspace* ws) {
DeviceOption option;
CPUContext context(option);
Blob* blob = ws->CreateBlob(name);
auto* tensor = BlobGetMutableTensor(blob, CPU);
tensor->Resize(shape);
math::Set<float, CPUContext>(
tensor->numel(), value, tensor->template mutable_data<float>(), &context);
}
void AddNoiseInput(const vector<int64_t>& shape,
const string& name,
Workspace* ws) {
DeviceOption option;
CPUContext context(option);
Blob* blob = ws->CreateBlob(name);
auto* tensor = BlobGetMutableTensor(blob, CPU);
tensor->Resize(shape);
math::RandGaussian<float, CPUContext>(
tensor->numel(),
0.0f,
10.0f,
tensor->template mutable_data<float>(),
&context);
}
inline float relativeError(float a, float b) {
return std::abs(a - b) / (0.5f * (std::abs(a) + std::abs(b)));
}
void compare(int N, int inputC, int H, int W,
int outputC,
int kernelH, int kernelW, int strideH, int strideW,
int padT, int padL, int padB, int padR,
int adjH, int adjW,
float maxRelErr, float absErrForRelErrFailure) {
LOG(INFO) <<
"running N " << N << " inputC " << inputC << " H " << H << " W " << W <<
" outputC " << outputC <<
" kernelH " << kernelH << " kernelW " << kernelW <<
" strideH " << strideH << " strideW " << strideW <<
" padT " << padT << " padL " << padL <<
" padB " << padB << " padR " << padR <<
" adjH " << adjH << " adjW " << adjW;
Workspace ws;
OperatorDef def1;
def1.set_name("test");
def1.set_type("ConvTranspose");
def1.set_engine("MOBILE");
def1.add_input("X");
def1.add_input("W");
def1.add_input("B");
def1.add_output("Y1");
def1.add_arg()->CopyFrom(MakeArgument("kernel_h", kernelH));
def1.add_arg()->CopyFrom(MakeArgument("kernel_w", kernelW));
def1.add_arg()->CopyFrom(MakeArgument("stride_h", strideH));
def1.add_arg()->CopyFrom(MakeArgument("stride_w", strideW));
def1.add_arg()->CopyFrom(MakeArgument("pad_t", padT));
def1.add_arg()->CopyFrom(MakeArgument("pad_l", padL));
def1.add_arg()->CopyFrom(MakeArgument("pad_b", padB));
def1.add_arg()->CopyFrom(MakeArgument("pad_r", padR));
def1.add_arg()->CopyFrom(MakeArgument("adj_h", adjH));
def1.add_arg()->CopyFrom(MakeArgument("adj_w", adjW));
AddNoiseInput(vector<int64_t>{N, inputC, H, W}, "X", &ws);
AddNoiseInput(vector<int64_t>{inputC, outputC, kernelH, kernelW}, "W", &ws);
AddNoiseInput(vector<int64_t>{outputC}, "B", &ws);
unique_ptr<OperatorBase> op1(CreateOperator(def1, &ws));
EXPECT_NE(nullptr, op1.get());
OperatorDef def2;
def2.set_name("test");
def2.set_type("ConvTranspose");
def2.add_input("X");
def2.add_input("W");
def2.add_input("B");
def2.add_output("Y2");
def2.add_arg()->CopyFrom(MakeArgument("kernel_h", kernelH));
def2.add_arg()->CopyFrom(MakeArgument("kernel_w", kernelW));
def2.add_arg()->CopyFrom(MakeArgument("stride_h", strideH));
def2.add_arg()->CopyFrom(MakeArgument("stride_w", strideW));
def2.add_arg()->CopyFrom(MakeArgument("pad_t", padT));
def2.add_arg()->CopyFrom(MakeArgument("pad_l", padL));
def2.add_arg()->CopyFrom(MakeArgument("pad_b", padB));
def2.add_arg()->CopyFrom(MakeArgument("pad_r", padR));
def2.add_arg()->CopyFrom(MakeArgument("adj_h", adjH));
def2.add_arg()->CopyFrom(MakeArgument("adj_w", adjW));
unique_ptr<OperatorBase> op2(CreateOperator(def2, &ws));
EXPECT_NE(nullptr, op2.get());
EXPECT_TRUE(op1->Run());
Blob* Y1blob = ws.GetBlob("Y1");
EXPECT_NE(nullptr, Y1blob);
auto& Y1 = Y1blob->Get<TensorCPU>();
EXPECT_TRUE(op2->Run());
Blob* Y2blob = ws.GetBlob("Y2");
EXPECT_NE(nullptr, Y2blob);
auto& Y2 = Y2blob->Get<TensorCPU>();
// Compare all output points
for (int n = 0; n < Y1.dim32(0); ++n) {
for (int c = 0; c < Y1.dim32(1); ++c) {
for (int h = 0; h < Y1.dim32(2); ++h) {
for (int w = 0; w < Y1.dim32(3); ++w) {
int offset =
n * Y1.dim32(1) * Y1.dim32(2) * Y1.dim32(3) +
c * Y1.dim32(2) * Y1.dim32(3) +
h * Y1.dim32(3) +
w;
auto v1 = Y1.data<float>()[offset];
auto v2 = Y2.data<float>()[offset];
float relErr = relativeError(v1, v2);
float absErr = std::abs(v1 - v2);
// For small values / small difference, the relative error
// can be huge but the absolute error will be small
EXPECT_TRUE(relErr <= maxRelErr ||
(absErr <= absErrForRelErrFailure)) <<
v1 << " " << v2 << " (rel err " << relErr << ") " <<
"(" << n << " " << c << " " << h << " " << w << ") " <<
"running N " << N << " inputC " << inputC <<
" H " << H << " W " << W <<
" outputC " << outputC <<
" kernelH " << kernelH << " kernelW " << kernelW <<
" strideH " << strideH << " strideW " << strideW <<
" padT " << padT << " padL " << padL <<
" padB " << padB << " padR " << padR <<
" adjH " << adjH << " adjW " << adjW;
}
}
}
}
}
} // namespace caffe2
int randInt(int a, int b) {
static std::random_device rd;
static std::mt19937 gen(rd());
return std::uniform_int_distribution<int>(a, b)(gen);
}
// TODO(#14383029) cblas_sgemm not yet implemented on limited mobile cases.
#if (defined(__ARM_NEON__) || defined(__ARM_NEON))
TEST(ConvTransposeMobile, Test) {
for (int i = 0; i < 10; ++i) {
int n = randInt(1, 3);
int planesIn = randInt(1, 10);
int h = randInt(10, 200);
int w = randInt(10, 200);
int planesOut = randInt(1, 10);
int kernelH = randInt(2, 5);
int kernelW = randInt(2, 5);
int strideH = randInt(1, 4);
int strideW = randInt(1, 4);
int padT = randInt(0, 3);
int padB = randInt(0, 3);
int padL = 0;
int padR = 0;
int adjH = randInt(0, 3);
if (adjH >= strideH) { adjH = strideH - 1; }
int adjW = randInt(0, 3);
if (adjW >= strideW) { adjW = strideW - 1; }
caffe2::compare(n, planesIn, h, w,
planesOut,
kernelH, kernelW,
strideH, strideW,
padT, padL, padB, padR,
adjH, adjW, 0.002f, 0.001f);
}
}
#endif
|