File: cosine_embedding_criterion_op.cu

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (73 lines) | stat: -rw-r--r-- 2,151 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
#include "caffe2/core/context_gpu.h"
#include "caffe2/operators/cosine_embedding_criterion_op.h"

namespace caffe2 {
namespace {


__global__ void CECKernel(
    const int N, const float* S, const int* Y, const float margin,
    float* output) {
  CUDA_1D_KERNEL_LOOP(i, N) {
    output[i] = Y[i] == 1 ? (1. - S[i]) : fmaxf(0.f, S[i] - margin);
  }
}

__global__ void CECGradientKernel(
    const int N, const float* S, const int* Y, const float* dOutput,
    const float margin, float* dS) {
  CUDA_1D_KERNEL_LOOP(i, N) {
    dS[i] = dOutput[i] * (Y[i] == 1 ? -1 : static_cast<float>(S[i] >= margin));
  }
}
}  // namespace

template <>
bool CosineEmbeddingCriterionOp<CUDAContext>::RunOnDevice() {
  auto& S = Input(0);
  auto& Y = Input(1);

  CAFFE_ENFORCE(S.numel() == Y.numel(),
                "The embedding and label should have the same size.");
  auto* output = Output(0, S.sizes(), at::dtype<float>());

  const float* Sdata = S.data<float>();
  const int* Ydata = Y.data<int>();
  float* output_data = output->template mutable_data<float>();

  CECKernel<<<CAFFE_GET_BLOCKS(S.numel()), CAFFE_CUDA_NUM_THREADS,
              0, context_.cuda_stream()>>>(
      S.numel(), Sdata, Ydata, margin_, output_data);
  C10_CUDA_KERNEL_LAUNCH_CHECK();

  return true;
}

template <>
bool CosineEmbeddingCriterionGradientOp<CUDAContext>::RunOnDevice() {
  auto& S = Input(0);
  auto& Y = Input(1);
  auto& dOutput = Input(2);


  auto* dS = Output(0, S.sizes(), at::dtype<float>());

  const float* Sdata = S.data<float>();
  const int* Ydata = Y.data<int>();
  const float* dOutput_data = dOutput.data<float>();
  float* dSdata = dS->template mutable_data<float>();
  CECGradientKernel<<<CAFFE_GET_BLOCKS(S.numel()), CAFFE_CUDA_NUM_THREADS,
                      0, context_.cuda_stream()>>>(
      S.numel(), Sdata, Ydata, dOutput_data, margin_, dSdata);
  C10_CUDA_KERNEL_LAUNCH_CHECK();

  return true;
}

REGISTER_CUDA_OPERATOR(
    CosineEmbeddingCriterion,
    CosineEmbeddingCriterionOp<CUDAContext>);
REGISTER_CUDA_OPERATOR(
    CosineEmbeddingCriterionGradient,
    CosineEmbeddingCriterionGradientOp<CUDAContext>);
}  // namespace caffe2