1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
|
/*!
******************* BEGIN Caffe Copyright Notice and Disclaimer ****************
*
* COPYRIGHT
*
* All contributions by the University of California:
* Copyright (c) 2014-2017 The Regents of the University of California (Regents)
* All rights reserved.
*
* All other contributions:
* Copyright (c) 2014-2017, the respective contributors
* All rights reserved.
*
* Caffe uses a shared copyright model: each contributor holds copyright over
* their contributions to Caffe. The project versioning records all such
* contribution and copyright details. If a contributor wants to further mark
* their specific copyright on a particular contribution, they should indicate
* their copyright solely in the commit message of the change when it is
* committed.
*
* LICENSE
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* CONTRIBUTION AGREEMENT
*
* By contributing to the BVLC/caffe repository through pull-request, comment,
* or otherwise, the contributor releases their content to the
* license and copyright terms herein.
*
***************** END Caffe Copyright Notice and Disclaimer ********************
*
* Copyright (c) 2017 Microsoft
* Licensed under The Apache-2.0 License [see LICENSE for details]
* \file deformable_im2col.cuh
* \brief Function definitions of converting an image to
* column matrix based on kernel, padding, dilation, and offset.
* These functions are mainly used in deformable convolution operators.
* \ref: https://arxiv.org/abs/1703.06211
* \author Yuwen Xiong, Haozhi Qi, Jifeng Dai
*/
#include <cub/block/block_reduce.cuh>
#include <vector>
#include "caffe2/core/common.h"
#include "caffe2/core/context_gpu.h"
#include "caffe2/operators/deform_conv_op.h"
#include "caffe2/operators/deform_conv_op_impl.h"
#include "caffe2/utils/GpuAtomics.cuh"
namespace caffe2 {
typedef int64_t index_t;
typedef std::vector<int64_t> TShape;
template <typename DType>
__device__ DType deformable_im2col_bilinear(
const DType* bottom_data,
const int data_width,
const int height,
const int width,
DType h,
DType w) {
int h_low = floor(h);
int w_low = floor(w);
int h_high;
int w_high;
if (h_low >= height - 1) {
h_high = h_low = height - 1;
h = (DType)h_low;
} else {
h_high = h_low + 1;
}
if (w_low >= width - 1) {
w_high = w_low = width - 1;
w = (DType)w_low;
} else {
w_high = w_low + 1;
}
DType lh = h - h_low;
DType lw = w - w_low;
DType hh = 1 - lh, hw = 1 - lw;
DType v1 = bottom_data[h_low * data_width + w_low];
DType v2 = bottom_data[h_low * data_width + w_high];
DType v3 = bottom_data[h_high * data_width + w_low];
DType v4 = bottom_data[h_high * data_width + w_high];
DType w1 = hh * hw, w2 = hh * lw, w3 = lh * hw, w4 = lh * lw;
DType val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
return val;
}
template <typename DType>
__device__ DType get_gradient_weight(
DType argmax_h,
DType argmax_w,
const int h,
const int w,
const int height,
const int width) {
if (argmax_h < 0 || argmax_h > height || argmax_w < 0 || argmax_w > width) {
// empty
return 0;
}
argmax_h = max(argmax_h, (DType)0.0f);
argmax_w = max(argmax_w, (DType)0.0f);
int argmax_h_low = (int)argmax_h;
int argmax_w_low = (int)argmax_w;
int argmax_h_high;
int argmax_w_high;
if (argmax_h_low >= height - 1) {
argmax_h_high = argmax_h_low = height - 1;
argmax_h = (DType)argmax_h_low;
} else {
argmax_h_high = argmax_h_low + 1;
}
if (argmax_w_low >= width - 1) {
argmax_w_high = argmax_w_low = width - 1;
argmax_w = (DType)argmax_w_low;
} else {
argmax_w_high = argmax_w_low + 1;
}
DType weight = 0;
if (h == argmax_h_low) {
if (w == argmax_w_low) {
weight = (h + 1 - argmax_h) * (w + 1 - argmax_w);
} else if (w == argmax_w_high) {
weight = (h + 1 - argmax_h) * (argmax_w + 1 - w);
}
} else if (h == argmax_h_high) {
if (w == argmax_w_low) {
weight = (argmax_h + 1 - h) * (w + 1 - argmax_w);
} else if (w == argmax_w_high) {
weight = (argmax_h + 1 - h) * (argmax_w + 1 - w);
}
}
return weight;
}
template <typename DType>
__device__ DType get_coordinate_weight(
DType argmax_h,
DType argmax_w,
const int height,
const int width,
const DType* im_data,
const int data_width,
const int bp_dir) {
if (argmax_h < 0 || argmax_h > height || argmax_w < 0 || argmax_w > width) {
// empty
return 0;
}
if (argmax_h < 0)
argmax_h = 0;
if (argmax_w < 0)
argmax_w = 0;
int argmax_h_low = (int)argmax_h;
int argmax_w_low = (int)argmax_w;
int argmax_h_high;
int argmax_w_high;
if (argmax_h_low >= height - 1) {
argmax_h_high = argmax_h_low = height - 1;
argmax_h = (DType)argmax_h_low;
} else {
argmax_h_high = argmax_h_low + 1;
}
if (argmax_w_low >= width - 1) {
argmax_w_high = argmax_w_low = width - 1;
argmax_w = (DType)argmax_w_low;
} else {
argmax_w_high = argmax_w_low + 1;
}
DType weight = 0;
if (bp_dir == 0) {
weight += -1 * (argmax_w_low + 1 - argmax_w) *
im_data[argmax_h_low * data_width + argmax_w_low];
weight += -1 * (argmax_w - argmax_w_low) *
im_data[argmax_h_low * data_width + argmax_w_high];
weight += (argmax_w_low + 1 - argmax_w) *
im_data[argmax_h_high * data_width + argmax_w_low];
weight += (argmax_w - argmax_w_low) *
im_data[argmax_h_high * data_width + argmax_w_high];
} else if (bp_dir == 1) {
weight += -1 * (argmax_h_low + 1 - argmax_h) *
im_data[argmax_h_low * data_width + argmax_w_low];
weight += (argmax_h_low + 1 - argmax_h) *
im_data[argmax_h_low * data_width + argmax_w_high];
weight += -1 * (argmax_h - argmax_h_low) *
im_data[argmax_h_high * data_width + argmax_w_low];
weight += (argmax_h - argmax_h_low) *
im_data[argmax_h_high * data_width + argmax_w_high];
}
return weight;
}
/*!
* \brief deformable_im2col gpu kernel.
* DO NOT call this directly. Use wrapper function im2col() instead;
*/
template <typename DType>
__global__ void deformable_im2col_gpu_kernel(
const int n,
const DType* data_im,
const DType* data_offset,
const int height,
const int width,
const int kernel_h,
const int kernel_w,
const int pad_h,
const int pad_w,
const int stride_h,
const int stride_w,
const int dilation_h,
const int dilation_w,
const int channel_per_deformable_group,
const int height_col,
const int width_col,
DType* data_col) {
CUDA_1D_KERNEL_LOOP(index, n) {
// index index of output matrix
const int w_col = index % width_col;
const int h_col = (index / width_col) % height_col;
const int c_im = (index / width_col) / height_col;
const int c_col = c_im * kernel_h * kernel_w;
// compute deformable group index
const int deformable_group_index = c_im / channel_per_deformable_group;
const int h_in = h_col * stride_h - pad_h;
const int w_in = w_col * stride_w - pad_w;
DType* data_col_ptr =
data_col + (c_col * height_col + h_col) * width_col + w_col;
const DType* data_im_ptr = data_im + (c_im * height + h_in) * width + w_in;
const DType* data_offset_ptr = data_offset +
deformable_group_index * 2 * kernel_h * kernel_w * height_col *
width_col;
for (int i = 0; i < kernel_h; ++i) {
for (int j = 0; j < kernel_w; ++j) {
const int data_offset_h_ptr =
((2 * (i * kernel_w + j)) * height_col + h_col) * width_col + w_col;
const int data_offset_w_ptr =
((2 * (i * kernel_w + j) + 1) * height_col + h_col) * width_col +
w_col;
const DType offset_h = data_offset_ptr[data_offset_h_ptr];
const DType offset_w = data_offset_ptr[data_offset_w_ptr];
DType val = static_cast<DType>(0);
const DType h_im = h_in + i * dilation_h + offset_h;
const DType w_im = w_in + j * dilation_w + offset_w;
if (h_im >= 0 && w_im >= 0 && h_im < height && w_im < width) {
const DType map_h = i * dilation_h + offset_h;
const DType map_w = j * dilation_w + offset_w;
const int cur_height = height - h_in;
const int cur_width = width - w_in;
val = deformable_im2col_bilinear(
data_im_ptr, width, cur_height, cur_width, map_h, map_w);
}
*data_col_ptr = val;
data_col_ptr += height_col * width_col;
}
}
}
}
/*!\brief
* cpu function of deformable_im2col algorithm
* \param s device stream
* \param data_im pointer of an image (C, H, W, ...) in the image batch
* \param data_offset pointer of offset (C, H, W, ...) in the offset batch
* \param im_shape input image shape in dimensions (N, C, H, W,)
* \param col_shape column buffer shape (#channels, output_im_height,
* output_im_width, ...) \param kernel_shape kernel filter shape \param pad pad
* shape \param stride stride shape \param dilation dilation shape \param
* deformable_group #offset group that deformable convolution use \param
* data_col column buffer pointer
*/
template <typename DType, typename Context>
void DeformConvOpBase<DType, Context>::DeformableIm2col(
const DType* data_im,
const DType* data_offset,
at::IntArrayRef im_shape,
at::IntArrayRef col_shape,
DType* data_col) {
TORCH_CHECK_LT(2, CAFFE_CUDA_NUM_THREADS);
CAFFE_ENFORCE_EQ(pad_t(), pad_b());
CAFFE_ENFORCE_EQ(pad_l(), pad_r());
const int pad_h = pad_t();
const int pad_w = pad_l();
index_t channel_per_deformable_group = im_shape[1] / deformable_group_;
index_t num_kernels = im_shape[1] * size_from_dim_(1, col_shape);
deformable_im2col_gpu_kernel<DType>
<<<CAFFE_GET_BLOCKS(num_kernels),
CAFFE_CUDA_NUM_THREADS,
0,
context_.cuda_stream()>>>(
num_kernels,
data_im,
data_offset,
im_shape[2],
im_shape[3],
kernel_h(),
kernel_w(),
pad_h,
pad_w,
stride_h(),
stride_w(),
dilation_h(),
dilation_w(),
channel_per_deformable_group,
col_shape[1],
col_shape[2],
data_col);
C10_CUDA_KERNEL_LAUNCH_CHECK();
}
/*!
* \brief deformable_col2im gpu kernel.
* \brief DO NOT call this directly. Use wrapper function deformable_col2im()
* instead;
*/
template <typename DType>
__global__ void deformable_col2im_gpu_kernel(
const int n,
const DType* data_col,
const DType* data_offset,
const int channels,
const int height,
const int width,
const int kernel_h,
const int kernel_w,
const int pad_h,
const int pad_w,
const int stride_h,
const int stride_w,
const int dilation_h,
const int dilation_w,
const int channel_per_deformable_group,
const int height_col,
const int width_col,
DType* grad_im) {
CUDA_1D_KERNEL_LOOP(index, n) {
const int j = (index / width_col / height_col) % kernel_w;
const int i = (index / width_col / height_col / kernel_w) % kernel_h;
const int c = index / width_col / height_col / kernel_w / kernel_h;
// compute the start and end of the output
const int deformable_group_index = c / channel_per_deformable_group;
int w_out = index % width_col;
int h_out = (index / width_col) % height_col;
int w_in = w_out * stride_w - pad_w;
int h_in = h_out * stride_h - pad_h;
const DType* data_offset_ptr = data_offset +
deformable_group_index * 2 * kernel_h * kernel_w * height_col *
width_col;
const int data_offset_h_ptr =
((2 * (i * kernel_w + j)) * height_col + h_out) * width_col + w_out;
const int data_offset_w_ptr =
((2 * (i * kernel_w + j) + 1) * height_col + h_out) * width_col + w_out;
const DType offset_h = data_offset_ptr[data_offset_h_ptr];
const DType offset_w = data_offset_ptr[data_offset_w_ptr];
const DType cur_inv_h_data = h_in + i * dilation_h + offset_h;
const DType cur_inv_w_data = w_in + j * dilation_w + offset_w;
const DType cur_top_grad = data_col[index];
const int cur_h = (int)cur_inv_h_data;
const int cur_w = (int)cur_inv_w_data;
for (int dy = -2; dy <= 2; dy++) {
for (int dx = -2; dx <= 2; dx++) {
if (cur_h + dy >= 0 && cur_h + dy < height && cur_w + dx >= 0 &&
cur_w + dx < width &&
c10::cuda::compat::abs(cur_inv_h_data - (cur_h + dy)) < 1 &&
c10::cuda::compat::abs(cur_inv_w_data - (cur_w + dx)) < 1) {
int cur_bottom_grad_pos =
(c * height + cur_h + dy) * width + cur_w + dx;
DType weight = get_gradient_weight(
cur_inv_h_data,
cur_inv_w_data,
cur_h + dy,
cur_w + dx,
height,
width);
gpu_atomic_add(grad_im + cur_bottom_grad_pos, weight * cur_top_grad);
}
}
}
}
}
/*!\brief
* gpu function of deformable_col2im algorithm
* \param s device stream
* \param data_col start pointer of the column buffer to be filled
* \param data_offset pointer of offset (C, H, W, ...) in the offset batch
* \param im_shape input image shape in dimensions (N, C, H, W,)
* \param col_shape column buffer shape
* \param kernel_shape kernel filter shape
* \param pad pad shape
* \param stride stride shape
* \param dilation dilation shape
* \param deformable_group #offset group that deformable convolution use
* \param grad_im pointer of a image (C, H, W,...) in the image batch
*/
template <typename DType, typename Context>
void DeformConvOpBase<DType, Context>::DeformableCol2im(
const DType* data_col,
const DType* data_offset,
at::IntArrayRef im_shape,
at::IntArrayRef col_shape,
DType* grad_im) {
CAFFE_ENFORCE_EQ(pad_t(), pad_b());
CAFFE_ENFORCE_EQ(pad_l(), pad_r());
const int pad_h = pad_t();
const int pad_w = pad_l();
index_t im_size = size_from_dim_(1, im_shape);
index_t channel_per_deformable_group = im_shape[1] / deformable_group_;
index_t num_kernels = size_from_dim_(0, col_shape);
// num_axes should be smaller than block size
TORCH_CHECK_LT(2, CAFFE_CUDA_NUM_THREADS);
// To avoid involving atomic operations, we will launch one kernel per
// bottom dimension, and then in the kernel add up the top dimensions.
// NOLINT_NEXT_LINE(whitespace/operators)
deformable_col2im_gpu_kernel<DType>
<<<CAFFE_GET_BLOCKS(num_kernels),
CAFFE_CUDA_NUM_THREADS,
0,
context_.cuda_stream()>>>(
num_kernels,
data_col,
data_offset,
im_shape[1],
im_shape[2],
im_shape[3],
kernel_h(),
kernel_w(),
pad_h,
pad_w,
stride_h(),
stride_w(),
dilation_h(),
dilation_w(),
channel_per_deformable_group,
col_shape[1],
col_shape[2],
grad_im);
C10_CUDA_KERNEL_LAUNCH_CHECK();
}
/*!
* \brief deformable_col2im_coord gpu kernel.
* \brief DO NOT call this directly. Use wrapper function
* deformable_col2im_coord() instead;
*/
template <typename DType>
__global__ void deformable_col2im_coord_gpu_kernel(
const int n,
const DType* data_col,
const DType* data_im,
const DType* data_offset,
const int channels,
const int height,
const int width,
const int kernel_h,
const int kernel_w,
const int pad_h,
const int pad_w,
const int stride_h,
const int stride_w,
const int dilation_h,
const int dilation_w,
const int channel_per_deformable_group,
const int height_col,
const int width_col,
DType* grad_offset) {
CUDA_1D_KERNEL_LOOP(index, n) {
DType val = 0;
int w = index % width_col;
int h = (index / width_col) % height_col;
int c = index / width_col / height_col;
// compute the start and end of the output
const int deformable_group_index = c / (2 * kernel_h * kernel_w);
const int col_step = kernel_h * kernel_w;
int cnt = 0;
const DType* data_col_ptr = data_col +
deformable_group_index * channel_per_deformable_group * width_col *
height_col;
const DType* data_im_ptr = data_im +
deformable_group_index * channel_per_deformable_group / kernel_h /
kernel_w * height * width;
const DType* data_offset_ptr = data_offset +
deformable_group_index * 2 * kernel_h * kernel_w * height_col *
width_col;
const int offset_c = c - deformable_group_index * 2 * kernel_h * kernel_w;
for (int col_c = (offset_c / 2); col_c < channel_per_deformable_group;
col_c += col_step) {
const int col_pos = ((col_c * height_col) + h) * width_col + w;
const int bp_dir = offset_c % 2;
int j = (col_pos / width_col / height_col) % kernel_w;
int i = (col_pos / width_col / height_col / kernel_w) % kernel_h;
int w_out = col_pos % width_col;
int h_out = (col_pos / width_col) % height_col;
int w_in = w_out * stride_w - pad_w;
int h_in = h_out * stride_h - pad_h;
const int data_offset_h_ptr =
(((2 * (i * kernel_w + j)) * height_col + h_out) * width_col + w_out);
const int data_offset_w_ptr =
(((2 * (i * kernel_w + j) + 1) * height_col + h_out) * width_col +
w_out);
const DType offset_h = data_offset_ptr[data_offset_h_ptr];
const DType offset_w = data_offset_ptr[data_offset_w_ptr];
DType inv_h = h_in + i * dilation_h + offset_h;
DType inv_w = w_in + j * dilation_w + offset_w;
if (inv_h < 0 || inv_w < 0 || inv_h >= height || inv_w >= width) {
inv_h = inv_w = -1;
}
const DType weight = get_coordinate_weight(
inv_h,
inv_w,
height,
width,
data_im_ptr + cnt * height * width,
width,
bp_dir);
val += weight * data_col_ptr[col_pos];
cnt += 1;
}
grad_offset[index] = val;
}
}
/*!\brief
* gpu function of deformable_col2im_coord algorithm
* \param s device stream
* \param data_col start pointer of the column buffer to be filled
* \param data_im pointer of an image (C, H, W, ...) in the image batch
* \param data_offset pointer of offset (C, H, W, ...) in the offset batch
* \param im_shape input image shape in dimensions (N, C, H, W,)
* \param col_shape column buffer shape
* \param kernel_shape kernel filter shape
* \param pad pad shape
* \param stride stride shape
* \param dilation dilation shape
* \param deformable_group #offset group that deformable convolution use
* \param grad_offset pointer of the offset (C, H, W,...) in the offset batch
*/
template <typename DType, typename Context>
void DeformConvOpBase<DType, Context>::DeformableCol2imCoord(
const DType* data_col,
const DType* data_im,
const DType* data_offset,
at::IntArrayRef im_shape,
at::IntArrayRef col_shape,
DType* grad_offset) {
CAFFE_ENFORCE_EQ(pad_t(), pad_b());
CAFFE_ENFORCE_EQ(pad_l(), pad_r());
const int pad_h = pad_t();
const int pad_w = pad_l();
index_t num_kernels = col_shape[1] * col_shape[2] * 2 * kernel_h() *
kernel_w() * deformable_group_;
index_t channel_per_deformable_group = col_shape[0] / deformable_group_;
// num_axes should be smaller than block size
TORCH_CHECK_LT(2, CAFFE_CUDA_NUM_THREADS);
// To avoid involving atomic operations, we will launch one kernel per
// bottom dimension, and then in the kernel add up the top dimensions.
// NOLINT_NEXT_LINE(whitespace/operators)
deformable_col2im_coord_gpu_kernel<DType>
<<<CAFFE_GET_BLOCKS(num_kernels),
CAFFE_CUDA_NUM_THREADS,
0,
context_.cuda_stream()>>>(
num_kernels,
data_col,
data_im,
data_offset,
im_shape[1],
im_shape[2],
im_shape[3],
kernel_h(),
kernel_w(),
pad_h,
pad_w,
stride_h(),
stride_w(),
dilation_h(),
dilation_w(),
channel_per_deformable_group,
col_shape[1],
col_shape[2],
grad_offset);
C10_CUDA_KERNEL_LAUNCH_CHECK();
}
REGISTER_CUDA_OPERATOR(DeformConv, DeformConvOp<float, CUDAContext>);
REGISTER_CUDA_OPERATOR(
DeformConvGradient,
DeformConvGradientOp<float, CUDAContext>);
} // namespace caffe2
|