1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
|
// conv_op_impl.h is the templated implementation of the conv_op.h file.
#ifndef CAFFE2_OPERATORS_DEFORM_CONV_OP_IMPL_H_
#define CAFFE2_OPERATORS_DEFORM_CONV_OP_IMPL_H_
#include "caffe2/core/context.h"
#include "caffe2/core/flags.h"
#include "caffe2/core/logging.h"
#include "caffe2/core/operator.h"
#include "caffe2/operators/conv_pool_op_base.h"
#include "caffe2/operators/deform_conv_op.h"
#include "caffe2/utils/math.h"
namespace caffe2 {
template <typename T, class Context>
bool DeformConvOp<T, Context>::RunOnDeviceWithOrderNCHW() {
const Tensor& X = Input(INPUT);
const Tensor& offset = Input(OFFSET);
auto& filter = Input(FILTER);
Tensor* Y = Output(0);
const int N = X.dim32(0), C = X.dim32(1);
CAFFE_ENFORCE_EQ(X.dim(), filter.dim());
const int M = filter.dim32(0);
CAFFE_ENFORCE(
C == filter.dim32(1) * group_,
"Convolution op: input channels does not match: # of input channels ",
C,
" is not equal to kernel channels * group:",
filter.dim32(1),
"*",
group_);
CAFFE_ENFORCE(
M % group_ == 0,
"The number of output channels is not divisible by group.");
CAFFE_ENFORCE(
kernel_.size() == 2,
"Deformable convolution only supports 2d kernel, has ",
kernel_.size(),
"d kernel.");
CAFFE_ENFORCE(
offset.dim() == 4,
"Deformable convolution only supports 4d offset, has ",
offset.dim(),
"d offset.");
CAFFE_ENFORCE_EQ(offset.dim32(0), N);
CAFFE_ENFORCE(
C % deformable_group_ == 0,
"The number of input channels ",
C,
" is not divisible by deformable group ",
deformable_group_);
CAFFE_ENFORCE(
M % deformable_group_ == 0,
"The number of output channels ",
M,
" is not divisible by deformable group ",
deformable_group_);
CAFFE_ENFORCE(
offset.dim32(1) == 2 * kernel_h() * kernel_w() * deformable_group_,
"Deformable convolution: offset 1st dimension must equal "
"2 * kernel_h * kernel_w * deformable_group: 2 * ",
kernel_h(),
" * ",
kernel_w(),
" * ",
deformable_group_);
CAFFE_ENFORCE_EQ(
offset.dim32(2),
(X.dim32(2) + pad_t() + pad_b() - (dilation_h() * (kernel_h() - 1) + 1)) /
stride_h() +
1);
CAFFE_ENFORCE_EQ(
offset.dim32(3),
(X.dim32(3) + pad_l() + pad_r() - (dilation_w() * (kernel_w() - 1) + 1)) /
stride_w() +
1);
int kernel_dims_size = 1;
for (const auto i : c10::irange(kernel_.size())) {
CAFFE_ENFORCE(filter.dim32(i + 2) == kernel_[i]);
kernel_dims_size *= kernel_[i];
}
ConvPoolOpBase<Context>::SetOutputSize(X, Y, filter.dim32(0));
const vector<int> input_dims = GetDims(X);
const vector<int> output_dims = GetDims(*Y);
const int input_image_size = this->GetDimsSize(X);
const int output_image_size = this->GetDimsSize(*Y);
vector<int> img_shape;
img_shape.assign(X.sizes().begin() + 1, X.sizes().end());
vector<int> buffer_shape;
buffer_shape.push_back(C / group_ * kernel_dims_size);
buffer_shape.insert(
buffer_shape.end(), output_dims.begin(), output_dims.end());
// The dimension of each kernel
const int kernel_dim = C / group_ * kernel_dims_size;
// The offset corresponding to a single input image, and a single output
// image.
const int input_offset = C / group_ * input_image_size;
const int output_offset = M / group_ * output_image_size;
const int offset_offset = offset.numel() / offset.dim32(0);
const int filter_offset = filter.numel() / group_;
// The col buffer is stored in CHW order as well - kernel_dim, and the height
// and width.
const T* Xdata = X.template data<T>();
const T* offset_data = offset.template data<T>();
if (InputSize() == 4) {
auto& bias = Input(BIAS);
CAFFE_ENFORCE(bias.dim() == 1);
CAFFE_ENFORCE(bias.dim32(0) == M);
if (bias_multiplier_.numel() != output_image_size) {
// If the helper bias multiplier is not image size, reshape and fill it
// with
// one.
ReinitializeTensor(
&bias_multiplier_,
vector<int64_t>(1, output_image_size),
at::dtype<T>().device(Context::GetDeviceType()));
math::Set<T, Context>(
output_image_size,
static_cast<T>(1),
bias_multiplier_.template mutable_data<T>(),
&context_);
}
}
T* Ydata = Y->template mutable_data<T>();
const T* bias_data = nullptr;
if (InputSize() == 4) {
bias_data = Input(BIAS).template data<T>();
}
auto f = [this,
&filter_offset,
&bias_data,
&X,
&buffer_shape,
&N,
&Xdata,
&offset_data,
&M,
&filter,
&output_image_size,
&kernel_dim,
&Ydata,
&input_offset,
&offset_offset,
&output_offset](Tensor* col_buffer) {
col_buffer->Resize(buffer_shape);
T* col_buffer_data = col_buffer->template mutable_data<T>();
// Im2col, followed by gemm.
for (const auto image_id : c10::irange(N)) {
(void)image_id; // CUDA-10.2 on Windows crashes when C10_UNUSED macro is used
for (const auto group_id : c10::irange(group_)) {
DeformableIm2col(
Xdata + group_id * input_offset,
offset_data,
X.sizes(),
col_buffer->sizes(),
col_buffer_data);
// Weight term
math::Gemm<T, Context>(
CblasNoTrans,
CblasNoTrans,
M / group_,
output_image_size,
kernel_dim,
1,
filter.template data<T>() + group_id * filter_offset,
col_buffer_data,
0,
Ydata + group_id * output_offset,
&context_);
}
if (bias_data) {
math::Gemm<T, Context>(
CblasNoTrans,
CblasNoTrans,
M,
output_image_size,
1,
1,
bias_data,
bias_multiplier_.template data<T>(),
1,
Ydata,
&context_);
}
Xdata += input_offset * group_;
Ydata += output_offset * group_;
offset_data += offset_offset;
}
};
if (FLAGS_caffe2_force_shared_col_buffer || shared_buffer_) {
runWithSharedBuffer<Context>(ws_, f);
} else {
f(&col_buffer_);
}
return true;
}
template <typename T, class Context>
bool DeformConvGradientOp<T, Context>::RunOnDeviceWithOrderNCHW() {
auto& X = Input(INPUT);
auto& offset = Input(OFFSET);
auto& filter = Input(FILTER);
auto& dY = Input(OUTPUT_GRAD);
const int N = X.dim32(0), C = X.dim32(1);
const vector<int> input_dims = this->GetDims(X);
const int input_image_size = this->GetDimsSize(X);
const vector<int> output_dims = this->GetDims(dY);
// The output image size is the spatial size of the output.
const int output_image_size = this->GetDimsSize(dY);
ConvPoolOpBase<Context>::ComputePads(input_dims);
CAFFE_ENFORCE_EQ(X.dim(), filter.dim());
const int M = filter.dim32(0);
CAFFE_ENFORCE(filter.dim32(1) * group_ == C);
CAFFE_ENFORCE(
kernel_.size() == 2,
"Deformable convolution only supports 2d kernel, has ",
kernel_.size(),
"d kernel.");
CAFFE_ENFORCE(
offset.dim() == 4,
"Deformable convolution only supports 4d offset, has ",
offset.dim(),
"d offset.");
CAFFE_ENFORCE_EQ(offset.dim32(0), N);
CAFFE_ENFORCE(
C % deformable_group_ == 0,
"The number of input channels ",
C,
" is not divisible by deformable group ",
deformable_group_);
CAFFE_ENFORCE(
M % deformable_group_ == 0,
"The number of output channels ",
M,
" is not divisible by deformable group ",
deformable_group_);
CAFFE_ENFORCE(
offset.dim32(1) == 2 * kernel_h() * kernel_w() * deformable_group_,
"Deformable convolution: offset 1st dimension must equal "
"2 * kernel_h * kernel_w * deformable_group: 2 * ",
kernel_h(),
" * ",
kernel_w(),
" * ",
deformable_group_);
CAFFE_ENFORCE_EQ(
offset.dim32(2),
(X.dim32(2) + pad_t() + pad_b() - (dilation_h() * (kernel_h() - 1) + 1)) /
stride_h() +
1);
CAFFE_ENFORCE_EQ(
offset.dim32(3),
(X.dim32(3) + pad_l() + pad_r() - (dilation_w() * (kernel_w() - 1) + 1)) /
stride_w() +
1);
int kernel_dims_size = 1;
for (const auto i : c10::irange(kernel_.size())) {
CAFFE_ENFORCE(filter.dim32(i + 2) == kernel_[i]);
kernel_dims_size *= kernel_[i];
}
CAFFE_ENFORCE(M % group_ == 0);
auto* dfilter = Output(FILTER_GRAD, filter.sizes(), at::dtype<T>());
auto* doffset = Output(OFFSET_GRAD, offset.sizes(), at::dtype<T>());
// The dimension of each kernel
const int kernel_dim = C / group_ * kernel_dims_size;
// The offset corresponding to a single input image, and a single output
// image.
const int input_offset = C / group_ * input_image_size;
const int output_offset = M / group_ * output_image_size;
const int offset_offset = offset.numel() / offset.dim32(0);
const int filter_offset = filter.numel() / group_;
// The col buffer is stored in CHW order as well - kernel_dim, and the
// height and width.
vector<int64_t> img_shape;
img_shape.assign(X.sizes().begin() + 1, X.sizes().end());
vector<int64_t> col_buffer_shape;
col_buffer_shape.push_back(C * kernel_dims_size);
col_buffer_shape.insert(
col_buffer_shape.end(), output_dims.begin(), output_dims.end());
ReinitializeTensor(
&col_buffer_,
col_buffer_shape,
at::dtype<T>().device(Context::GetDeviceType()));
const int col_buffer_offset = col_buffer_.numel() / group_;
const T* Xdata = X.template data<T>();
const T* filter_data = filter.template data<T>();
const T* offset_data = offset.template data<T>();
const T* dYdata = dY.template data<T>();
T* col_buffer_data = col_buffer_.template mutable_data<T>();
T* dfilter_data = dfilter->template mutable_data<T>();
T* doffset_data = doffset->template mutable_data<T>();
// Pre-setting the gradients to zero.
math::Set<T, Context>(dfilter->numel(), 0, dfilter_data, &context_);
T* dbias_data = nullptr;
if (!no_bias_) {
auto* dbias = Output(BIAS_OR_INPUT_GRAD, {M}, at::dtype<T>());
if (bias_multiplier_.numel() != output_image_size) {
// If the helper bias multiplier is not M, reshape and fill it with one.
ReinitializeTensor(
&bias_multiplier_,
vector<int64_t>(1, output_image_size),
at::dtype<T>().device(Context::GetDeviceType()));
math::Set<T, Context>(
output_image_size,
static_cast<T>(1),
bias_multiplier_.template mutable_data<T>(),
&context_);
}
dbias_data = dbias->template mutable_data<T>();
math::Set<T, Context>(dbias->numel(), 0, dbias_data, &context_);
}
T* dXdata = nullptr;
if (OutputSize() == 4 || (no_bias_ && (OutputSize() == 3))) {
auto* dX = Output(
no_bias_ ? BIAS_OR_INPUT_GRAD : INPUT_GRAD, X.sizes(), at::dtype<T>());
dXdata = dX->template mutable_data<T>();
math::Set<T, Context>(dX->numel(), 0, dXdata, &context_);
}
for (const auto image_id : c10::irange(N)) {
(void)image_id; // CUDA-10.2 on Windows crashes when C10_UNUSED macro is used
for (const auto group_id : c10::irange(group_)) {
math::Gemm<T, Context>(
CblasTrans,
CblasNoTrans,
kernel_dim,
output_image_size,
M / group_,
1,
filter_data + group_id * filter_offset,
dYdata + group_id * output_offset,
0,
col_buffer_data + group_id * col_buffer_offset,
&context_);
}
// Gradient with respect to offsets
DeformableCol2imCoord(
col_buffer_data,
Xdata,
offset_data,
X.sizes(),
col_buffer_shape,
doffset_data);
// Gradient with respect to input data
if (dXdata) {
DeformableCol2im(
col_buffer_data, offset_data, X.sizes(), col_buffer_shape, dXdata);
dXdata += input_offset * group_;
}
// Gradient with respect to filter
DeformableIm2col(
Xdata, offset_data, X.sizes(), col_buffer_shape, col_buffer_data);
for (const auto group_id : c10::irange(group_)) {
math::Gemm<T, Context>(
CblasNoTrans,
CblasTrans,
M / group_,
kernel_dim,
output_image_size,
1,
dYdata + group_id * output_offset,
col_buffer_data + group_id * col_buffer_offset,
1,
dfilter_data + group_id * filter_offset,
&context_);
}
// Gradient with respect to bias
if (dbias_data) {
math::Gemv<T, Context>(
CblasNoTrans,
M,
output_image_size,
1,
dYdata,
bias_multiplier_.template data<T>(),
1,
dbias_data,
&context_);
}
Xdata += input_offset * group_;
dYdata += output_offset * group_;
offset_data += offset_offset;
doffset_data += offset_offset;
}
return true;
}
} // namespace caffe2
#endif // CAFFE2_OPERATORS_DEFORM_CONV_OP_IMPL_H_
|