1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
|
#include "caffe2/operators/distance_op.h"
#include "caffe2/core/types.h"
#include "caffe2/utils/eigen_utils.h"
#ifdef USE_MKLDNN
#include <caffe2/ideep/operators/operator_fallback_ideep.h>
#include <caffe2/ideep/utils/ideep_operator.h>
#endif
namespace caffe2 {
template <>
bool SquaredL2DistanceOp<float, CPUContext>::RunOnDevice() {
auto& X = Input(0);
auto& Y = Input(1);
CAFFE_ENFORCE_EQ(X.dim(), Y.dim());
for (int i = 0; i < X.dim(); ++i) {
CAFFE_ENFORCE_EQ(X.dim32(i), Y.dim32(i));
}
int N = X.dim() > 0 ? X.dim32(0) : 1;
auto* distance = Output(0, {N}, at::dtype<float>());
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
int D = N > 0 ? X.numel() / N : 0;
float* distance_data = distance->template mutable_data<float>();
const float* X_data = X.data<float>();
const float* Y_data = Y.data<float>();
for (int i = 0; i < N; ++i) {
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
float Xscale, Yscale, cross;
math::Dot<float, CPUContext>(
D, X_data + i * D, X_data + i * D, &Xscale, &context_);
math::Dot<float, CPUContext>(
D, Y_data + i * D, Y_data + i * D, &Yscale, &context_);
math::Dot<float, CPUContext>(
D, X_data + i * D, Y_data + i * D, &cross, &context_);
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers,bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
distance_data[i] = (Xscale + Yscale) * 0.5 - cross;
}
return true;
}
template <>
bool L1DistanceOp<float, CPUContext>::RunOnDevice() {
auto& X = Input(0);
auto& Y = Input(1);
CAFFE_ENFORCE_EQ(X.dim(), Y.dim());
for (int i = 0; i < X.dim(); ++i) {
CAFFE_ENFORCE_EQ(X.dim32(i), Y.dim32(i));
}
int N = X.dim() > 0 ? X.dim32(0) : 1;
auto* distance = Output(0, {N}, at::dtype<float>());
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
int D = N > 0 ? X.numel() / N : 0;
const float* X_data = X.data<float>();
const float* Y_data = Y.data<float>();
for (int i = 0; i < N; ++i) {
(distance->template mutable_data<float>())[i] =
(ConstEigenVectorMap<float>(X_data + i * D, D).array() -
ConstEigenVectorMap<float>(Y_data + i * D, D).array())
.abs()
.sum();
}
return true;
}
template <>
bool L1DistanceGradientOp<float, CPUContext>::RunOnDevice() {
auto& X = Input(0);
auto& Y = Input(1);
auto& dDistance = Input(2);
CAFFE_ENFORCE_EQ(X.dim(), Y.dim());
for (int i = 0; i < X.dim(); ++i) {
CAFFE_ENFORCE_EQ(X.dim32(i), Y.dim32(i));
}
int N = X.dim() > 0 ? X.dim32(0) : 1;
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
int D = N > 0 ? X.numel() / N : 0;
CAFFE_ENFORCE(X.dim() == Y.dim());
for (int i = 0; i < X.dim(); ++i) {
CAFFE_ENFORCE(X.dim32(i) == Y.dim32(i));
}
CAFFE_ENFORCE(dDistance.dim() == 1);
CAFFE_ENFORCE(dDistance.dim32(0) == N);
auto* dX = Output(0, X.sizes(), at::dtype<float>());
auto* dY = Output(1, Y.sizes(), at::dtype<float>());
for (int i = 0; i < N; ++i) {
auto offset = i * D;
for (int j = 0; j < D; ++j) {
const float temp =
(X.data<float>())[offset + j] - (Y.data<float>())[offset + j];
const float kEps = 1e-12f;
if (temp < -kEps) {
dX->template mutable_data<float>()[offset + j] =
-(dDistance.data<float>())[i];
dY->template mutable_data<float>()[offset + j] =
(dDistance.data<float>())[i];
} else if (temp > kEps) {
dX->template mutable_data<float>()[offset + j] =
(dDistance.data<float>())[i];
dY->template mutable_data<float>()[offset + j] =
-(dDistance.data<float>())[i];
} else {
dX->template mutable_data<float>()[offset + j] = 0;
dY->template mutable_data<float>()[offset + j] = 0;
}
}
}
return true;
}
template <>
bool CosineSimilarityOp<float, CPUContext>::RunOnDevice() {
auto& X = Input(X_IN);
auto& Y = Input(Y_IN);
CAFFE_ENFORCE_EQ(X.dim(), Y.dim());
for (int i = 0; i < X.dim(); ++i) {
CAFFE_ENFORCE_EQ(X.dim32(i), Y.dim32(i));
}
const int N = X.dim() > 0 ? X.dim32(0) : 1;
const int D = X.size_from_dim(1);
auto* result = Output(COS_OUT, {N}, at::dtype<float>());
float* result_data = result->template mutable_data<float>();
const float* X_data = X.data<float>();
const float* Y_data = Y.data<float>();
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
float X2, Y2;
const float kEps = 1e-12f;
for (int i = 0; i < N; ++i) { // TODO: multithreading
auto offset = i * D;
math::Dot<float, CPUContext>(
D, X_data + offset, X_data + offset, &X2, &context_);
math::Dot<float, CPUContext>(
D, Y_data + offset, Y_data + offset, &Y2, &context_);
math::Dot<float, CPUContext>(
D, X_data + offset, Y_data + offset, result_data + i, &context_);
result_data[i] /= std::sqrt(std::max(X2, kEps) * std::max(Y2, kEps));
}
return true;
}
template <>
bool CosineSimilarityGradientOp<float, CPUContext>::RunOnDevice() {
auto& X = Input(X_IN);
auto& Y = Input(Y_IN);
auto& dCos = Input(DER_COS_IN);
const int N = X.dim() > 0 ? X.dim32(0) : 1;
const int D = X.size_from_dim(1);
CAFFE_ENFORCE(X.dim() == Y.dim());
for (int i = 0; i < X.dim(); ++i) {
CAFFE_ENFORCE(X.dim32(i) == Y.dim32(i));
}
CAFFE_ENFORCE(dCos.dim() == 1);
CAFFE_ENFORCE(dCos.dim32(0) == N);
auto* dX = Output(DER_X_OUT, X.sizes(), at::dtype<float>());
auto* dY = Output(DER_Y_OUT, Y.sizes(), at::dtype<float>());
const auto* X_data = X.template data<float>();
const auto* Y_data = Y.template data<float>();
const auto* dCos_data = dCos.template data<float>();
auto* dX_data = dX->template mutable_data<float>();
auto* dY_data = dY->template mutable_data<float>();
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
float XN, YN, XY;
const float kEps = 1e-12f;
for (int i = 0; i < N; ++i) { // TODO: multithreading
auto offset = i * D;
// TODO: cache these result from the forward pass
// ||x||
math::Dot<float, CPUContext>(
D, X_data + offset, X_data + offset, &XN, &context_);
XN = std::sqrt(std::max(XN, kEps));
// ||y||
math::Dot<float, CPUContext>(
D, Y_data + offset, Y_data + offset, &YN, &context_);
YN = std::sqrt(std::max(YN, kEps));
// ||x|| * || y ||
float XYN = XN * YN;
// x^Ty
math::Dot<float, CPUContext>(
D, X_data + offset, Y_data + offset, &XY, &context_);
math::Scale<float, float, CPUContext>(
D, dCos_data[i] / XYN, Y_data + offset, dX_data + offset, &context_);
math::Axpy(
D,
-dCos_data[i] * XY / (XN * XN * XYN),
X_data + offset,
dX_data + offset,
&context_);
math::Scale<float, float, CPUContext>(
D, dCos_data[i] / XYN, X_data + offset, dY_data + offset, &context_);
math::Axpy(
D,
-dCos_data[i] * XY / (YN * YN * XYN),
Y_data + offset,
dY_data + offset,
&context_);
}
return true;
}
template <>
bool DotProductOp<float, CPUContext>::RunOnDevice() {
auto& X = Input(X_IN);
auto& Y = Input(Y_IN);
CAFFE_ENFORCE_EQ(X.dim(), Y.dim());
for (int i = 0; i < X.dim(); ++i) {
CAFFE_ENFORCE_EQ(X.dim32(i), Y.dim32(i), "dimension at ", i);
}
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
int N, D;
if (X.numel() > 0) {
N = X.dim() > 0 ? X.dim32(0) : 1;
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
D = X.numel() / N;
} else {
N = 0;
D = 0;
}
auto* result = Output(DOT_OUT, {N}, at::dtype<float>());
float* result_data = result->template mutable_data<float>();
const float* X_data = X.template data<float>();
const float* Y_data = Y.template data<float>();
for (int i = 0; i < N; ++i) { // TODO: multithreading
auto offset = i * D;
math::Dot<float, CPUContext>(
D, X_data + offset, Y_data + offset, result_data + i, &context_);
}
return true;
}
vector<TensorShape> TensorInferenceForDotProduct(
const OperatorDef& /* def */,
const vector<TensorShape>& in) {
CAFFE_ENFORCE_GT(in.size(), 0);
vector<int64_t> dims(1);
dims[0] = in[0].dims().size() > 0 ? in[0].dims(0) : 1;
return vector<TensorShape>{CreateTensorShape(dims, in[0].data_type())};
}
OpSchema::Cost CostInferenceForDotProduct(
const OperatorDef& def,
const vector<TensorShape>& in) {
std::vector<TensorShape> out = TensorInferenceForDotProduct(def, in);
CAFFE_ENFORCE_GT(out.size(), 0);
CAFFE_ENFORCE_EQ(out[0].dims().size(), 1);
struct OpSchema::Cost c = PointwiseCostInference<2>(def, in);
auto const& out_0_element_size_byte =
DataTypeToTypeMeta(out[0].data_type()).itemsize();
c.bytes_written = out[0].dims(0) * out_0_element_size_byte;
c.params_bytes = 0;
return c;
}
template <>
bool DotProductGradientOp<float, CPUContext>::RunOnDevice() {
auto& X = Input(X_IN);
auto& Y = Input(Y_IN);
auto& dDot = Input(DER_DOT_IN);
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
int N, D;
if (X.numel() > 0) {
N = X.dim() > 0 ? X.dim32(0) : 1;
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
D = X.numel() / N;
} else {
N = 0;
D = 0;
}
CAFFE_ENFORCE(X.dim() == Y.dim());
for (int i = 0; i < X.dim(); ++i) {
CAFFE_ENFORCE(X.dim32(i) == Y.dim32(i));
}
CAFFE_ENFORCE(dDot.dim() == 1);
CAFFE_ENFORCE(dDot.dim32(0) == N);
auto* dX = Output(DER_X_OUT, X.sizes(), at::dtype<float>());
auto* dY = Output(DER_Y_OUT, Y.sizes(), at::dtype<float>());
const auto* X_data = X.template data<float>();
const auto* Y_data = Y.template data<float>();
const auto* dDot_data = dDot.template data<float>();
auto* dX_data = dX->template mutable_data<float>();
auto* dY_data = dY->template mutable_data<float>();
for (int i = 0; i < N; ++i) { // TODO: multithreading
auto offset = i * D;
math::Scale<float, float, CPUContext>(
D, dDot_data[i], X_data + offset, dY_data + offset, &context_);
math::Scale<float, float, CPUContext>(
D, dDot_data[i], Y_data + offset, dX_data + offset, &context_);
}
return true;
}
template <>
bool DotProductWithPaddingOp<float, CPUContext>::RunOnDevice() {
auto& X = Input(X_IN);
auto& Y = Input(Y_IN);
CAFFE_ENFORCE_EQ(X.dim(), Y.dim());
CAFFE_ENFORCE_EQ(X.dim32(0), Y.dim32(0));
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
int N, D, DX, DY, restD;
if (X.numel() > 0) {
N = X.dim() > 0 ? X.dim32(0) : 1;
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
DX = X.numel() / N;
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
DY = Y.numel() / N;
} else {
N = 0;
DX = 0;
DY = 0;
}
D = std::min(DX, DY);
restD = std::max(DX, DY) - D;
auto* result = Output(DOT_OUT, {N}, at::dtype<float>());
float* result_data = result->template mutable_data<float>();
const float* X_data = X.data<float>();
const float* Y_data = Y.data<float>();
for (int i = 0; i < N; ++i) { // TODO: multithreading
auto offsetX = i * DX, offsetY = i * DY;
if (replicate_) {
// L_ for longer vector and S_ for shorter vector
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
const float *L_data, *S_data;
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
int DL, DS;
if (DX > DY) {
L_data = X_data + offsetX;
S_data = Y_data + offsetY;
DL = DX;
DS = DY;
} else {
L_data = Y_data + offsetY;
S_data = X_data + offsetX;
DL = DY;
DS = DX;
}
float sum = 0.0;
float tmp = 0.0;
for (int j = 0; j < DL / DS; j++) {
math::Dot<float, CPUContext>(
DS, L_data + j * DS, S_data, &tmp, &context_);
sum += tmp;
}
*(result_data + i) = sum;
} else {
math::Dot<float, CPUContext>(
D, X_data + offsetX, Y_data + offsetY, result_data + i, &context_);
}
if (!replicate_ && DX != DY) {
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
const float* rest_data;
float rest_sum = 0;
if (DX > DY) {
rest_data = X_data + offsetX + D;
} else {
rest_data = Y_data + offsetY + D;
}
math::Sum<float, CPUContext>(restD, rest_data, &rest_sum, &context_);
result_data[i] += rest_sum * pad_value_;
}
}
return true;
}
// L2
REGISTER_CPU_OPERATOR(
SquaredL2Distance,
SquaredL2DistanceOp<float, CPUContext>);
REGISTER_CPU_OPERATOR(
SquaredL2DistanceGradient,
SquaredL2DistanceGradientOp<float, CPUContext>);
OPERATOR_SCHEMA(SquaredL2Distance)
.NumInputs(2)
.NumOutputs(1)
.IdenticalTypeAndShapeOfInputDim(0, 0)
.SetDoc(R"DOC(
Given two input float tensors X, Y, and produces one output float tensor
of the L2 difference between X and Y that is computed as ||(X - Y)^2 / 2||.
)DOC")
.Input(0, "X", "1D or 2D input tensor")
.Input(1, "Y", "1D or 2D input tensor (must have the same shape as X)")
.Output(0, "Z", "1D output tensor");
OPERATOR_SCHEMA(SquaredL2DistanceGradient).NumInputs(3).NumOutputs(2);
class GetSquaredL2DistanceGradient : public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
vector<OperatorDef> GetGradientDefs() override {
return SingleGradientDef(
"SquaredL2DistanceGradient",
"",
vector<string>{I(0), I(1), GO(0)},
vector<string>{GI(0), GI(1)});
}
};
REGISTER_GRADIENT(SquaredL2Distance, GetSquaredL2DistanceGradient);
// L1
REGISTER_CPU_OPERATOR(L1Distance, L1DistanceOp<float, CPUContext>);
REGISTER_CPU_OPERATOR(
L1DistanceGradient,
L1DistanceGradientOp<float, CPUContext>);
#ifdef USE_MKLDNN
REGISTER_IDEEP_OPERATOR(
L1DistanceGradient,
IDEEPFallbackOp<L1DistanceGradientOp<float, CPUContext>>);
#endif
OPERATOR_SCHEMA(L1Distance)
.NumInputs(2)
.NumOutputs(1)
.IdenticalTypeAndShapeOfInputDim(0, 0)
.SetDoc(R"DOC(
Computes the row-wise L1 Distance between the two input tensors $X$ and $Y$, which is defined as
$$L1Distance(\mathbf{x},\mathbf{y}) = \sum_{i}\mid x_i - y_i\mid$$
Note, both inputs must either be 1-dimensional or 2-dimensional and both must have the same shape. The output $Z$ will be 1-dimensional regardless and its length will equal the number of rows in the inputs.
Github Links:
- https://github.com/pytorch/pytorch/blob/master/caffe2/operators/distance_op.h
- https://github.com/pytorch/pytorch/blob/master/caffe2/operators/distance_op.cc
<details>
<summary> <b>Example</b> </summary>
**Code**
```
workspace.ResetWorkspace()
op = core.CreateOperator(
"L1Distance",
["X", "Y"],
["Z"]
)
// Create X
X = 5*np.ones((1, 4))
print("X:\n",X)
// Create Y
Y = np.ones((1, 4))
print("Y:\n",Y)
// Feed X & Y into workspace
workspace.FeedBlob("X", X.astype(np.float32))
workspace.FeedBlob("Y", Y.astype(np.float32))
// Run op
workspace.RunOperatorOnce(op)
// Collect Output
print("Z:\n", workspace.FetchBlob("Z"))
```
**Result**
```
X:
[[5. 5. 5. 5.]]
Y:
[[1. 1. 1. 1.]]
Z:
[16.]
```
</details>
)DOC")
.Input(0, "X", "First input tensor. (1D or 2D)")
.Input(1, "Y", "Second input tensor. (must have the same shape as $X$)")
.Output(0, "Z", "1D output tensor. One value for each row of the inputs.");
OPERATOR_SCHEMA(L1DistanceGradient).NumInputs(3).NumOutputs(2);
class GetL1DistanceGradient : public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
vector<OperatorDef> GetGradientDefs() override {
return SingleGradientDef(
"L1DistanceGradient",
"",
vector<string>{I(0), I(1), GO(0)},
vector<string>{GI(0), GI(1)});
}
};
REGISTER_GRADIENT(L1Distance, GetL1DistanceGradient);
// Dot Product
REGISTER_CPU_OPERATOR(DotProduct, DotProductOp<float, CPUContext>);
REGISTER_CPU_OPERATOR(
DotProductGradient,
DotProductGradientOp<float, CPUContext>);
OPERATOR_SCHEMA(DotProduct)
.NumInputs(2)
.NumOutputs(1)
.IdenticalTypeAndShapeOfInputDim(0, 0)
.SetDoc(R"DOC(
Computes and outputs the dot product of the two input float tensors `X` and `Y`.
Note that `X` and `Y` must be either 1D or 2D, and they must be the same shape.
The output tensor is 1D, which represents either the product of each element in
a respective dimension if the inputs are 1D, or the sum of the products in a
given dimension if the inputs are 2D matrices. Note that the actual dot product
is a scalar value, which is effectively the sum of the elements in the 1D
output tensor.
For 1D inputs:
Given two vectors $X = [x_0, x_1, x_2]$ and $Y = [y_0, y_1, y_2]$; $Z = [x_0 * y_0, x_1 * y_1, x_2 * y_2]$
For 2D inputs:
Given two matrices:
$$X = [[x_0^0, x_1^0, x_2^0], \\ [x_0^1, x_1^1, x_2^1], \\ [x_0^2, x_1^2, x_2^2], \\ ..., \\ [x_0^n, x_1^n, x_2^n]]$$
and
$$Y = [[y_0^0, y_1^0, y_2^0], \\ [y_0^1, y_1^1, y_2^1], \\ [y_0^2, y_1^2, y_2^2], \\ ..., \\ [y_0^n, y_1^n, y_2^n]]$$
then
$$Z = \biggl[\Big((x_0^0 * y_0^0) + (x_1^0 * y_1^0) + (x_2^0 * y_2^0)\Big), \\ \Big((x_0^1 * y_0^1) + (x_1^1 * y_1^1) + (x_2^1 * y_2^1)\Big), \\ \Big((x_0^2 * y_0^2) + (x_1^2 * y_1^2) + (x_2^2 * y_2^2)\Big), \\ ..., \\ \Big((x_0^n * y_0^n) + (x_1^n * y_1^n) + (x_2^n * y_2^n)\Big)\biggr]$$
Github Link:
- https://github.com/pytorch/pytorch/blob/master/caffe2/operators/distance_op.cc
<details>
<summary> <b>Example</b> </summary>
**Code**
```
workspace.ResetWorkspace()
op = core.CreateOperator(
"DotProduct",
["X", "Y"],
["Z"]
)
workspace.FeedBlob("X", np.random.randint(20, size=(5)).astype(np.float32))
workspace.FeedBlob("Y", np.random.randint(20, size=(5)).astype(np.float32))
print("X:\n", workspace.FetchBlob("X"))
print("Y:\n", workspace.FetchBlob("Y"))
workspace.RunOperatorOnce(op)
print("Z:\n", workspace.FetchBlob("X"))
workspace.ResetWorkspace()
workspace.FeedBlob("X", np.random.randint(10, size=(3,3)).astype(np.float32))
workspace.FeedBlob("Y", np.random.randint(10, size=(3,3)).astype(np.float32))
print("X:\n", workspace.FetchBlob("X"))
print("Y:\n", workspace.FetchBlob("Y"))
workspace.RunOperatorOnce(op)
print("Z:\n", workspace.FetchBlob("Z"))
```
**Result**
```
X:
[ 2. 15. 2. 7. 12.]
Y:
[ 3. 12. 9. 3. 18.]
Z:
[ 2. 15. 2. 7. 12.]
X:
[[2. 0. 4.]
[7. 7. 4.]
[7. 9. 9.]]
Y:
[[2. 0. 8.]
[9. 6. 1.]
[7. 8. 0.]]
Z:
[ 36. 109. 121.]
```
</details>
)DOC")
.Input(0, "X", "*(type: Tensor`<float>`)* 1D or 2D input tensor.")
.Input(
1,
"Y",
"*(type: Tensor`<float>`)* 1D or 2D input tensor (must have the same shape as X).")
.Output(0, "Z", "*(type: Tensor`<float>`)* 1D output tensor.")
.TensorInferenceFunction(TensorInferenceForDotProduct)
.CostInferenceFunction(
OpSchema::CostInferenceFunctionType(CostInferenceForDotProduct))
.InheritOnnxSchema();
OPERATOR_SCHEMA(DotProductGradient).NumInputs(3).NumOutputs(2);
class GetDotProductGradient : public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
vector<OperatorDef> GetGradientDefs() override {
return SingleGradientDef(
"DotProductGradient",
"",
vector<string>{I(0), I(1), GO(0)},
vector<string>{GI(0), GI(1)});
}
};
REGISTER_GRADIENT(DotProduct, GetDotProductGradient);
// Cosine Similarity
REGISTER_CPU_OPERATOR(CosineSimilarity, CosineSimilarityOp<float, CPUContext>);
REGISTER_CPU_OPERATOR(
CosineSimilarityGradient,
CosineSimilarityGradientOp<float, CPUContext>);
OPERATOR_SCHEMA(CosineSimilarity)
.NumInputs(2)
.NumOutputs(1)
.IdenticalTypeAndShapeOfInputDim(0, 0)
.SetDoc(R"DOC(
This op takes two input float tensors of the same size, $X$ and $Y$, and produces one output float tensor , $Z$, calculated as the cosine similarity between $X$ and $Y$. Recall, the cosine similarity between two tensors $X$ and $Y$ is defined as:
$$\mathbf{Z}=CosineSimilarity(\mathbf{X},\mathbf{Y}) = \frac{\mathbf{X}\cdot\mathbf{Y}}{\|\mathbf{X}\|\|\mathbf{Y}\|} = \frac{\sum_n^{i=1}X_iY_i}{\sqrt{\sum_n^{i=1}X_i^2}\sqrt{\sum_n^{i=1}Y_i^2}}$$
Github Links:
- https://github.com/pytorch/pytorch/blob/master/caffe2/operators/distance_op.h
- https://github.com/pytorch/pytorch/blob/master/caffe2/operators/distance_op.cc
<details>
<summary> <b>Example</b> </summary>
**Code**
```
workspace.ResetWorkspace()
op = core.CreateOperator(
"CosineSimilarity",
["X", "Y"],
["Z"]
)
// Create X
X = np.random.randn(3, 3)
print("X:\n",X)
// Create Y
Y = np.random.randn(3, 3)
print("Y:\n",Y)
// Feed X & Y into workspace
workspace.FeedBlob("X", X.astype(np.float32))
workspace.FeedBlob("Y", Y.astype(np.float32))
// Run op
workspace.RunOperatorOnce(op)
// Collect Output
print("Z:\n", workspace.FetchBlob("Z"))
```
**Result**
```
X:
[[-0.42635564 -0.23831588 -0.25515547]
[ 1.43914719 -1.05613228 1.01717373]
[ 0.06883105 0.33386519 -1.46648334]]
Y:
[[-0.90648691 -0.14241514 -1.1070837 ]
[ 0.92152729 -0.28115511 -0.17756722]
[-0.88394254 1.34654037 -0.80080998]]
Z:
[-1.7849885e-23 1.7849885e-23 -1.0842022e-07]
```
</details>
)DOC")
.Input(0, "X", "1D or 2D input tensor")
.Input(1, "Y", "1D or 2D input tensor (must have the same shape as X)")
.Output(0, "Z", "1D output tensor");
OPERATOR_SCHEMA(CosineSimilarityGradient).NumInputs(3).NumOutputs(2);
class GetCosineSimilarityGradient : public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
vector<OperatorDef> GetGradientDefs() override {
return SingleGradientDef(
"CosineSimilarityGradient",
"",
vector<string>{I(0), I(1), GO(0)},
vector<string>{GI(0), GI(1)});
}
};
REGISTER_GRADIENT(CosineSimilarity, GetCosineSimilarityGradient);
// Dot Product allows padding
REGISTER_CPU_OPERATOR(
DotProductWithPadding,
DotProductWithPaddingOp<float, CPUContext>);
REGISTER_CPU_OPERATOR(
DotProductWithPaddingGradient,
DotProductWithPaddingGradientOp<float, CPUContext>);
OPERATOR_SCHEMA(DotProductWithPadding)
.NumInputs(2)
.NumOutputs(1)
.SetDoc(R"DOC(
Given two input float tensors X, Y with different shapes and produces one
output float tensor of the dot product between X and Y. We currently support
two kinds of strategies to achieve this. Before doing normal dot_product 1)
pad the smaller tensor (using pad_value) to the same shape as the other one.
2) replicate the smaller tensor to the same shape as the other one. Note the
first dimension of X, Y must be equal. Only the second dimension of X or Y
can be padded.
)DOC")
.Input(0, "X", "1D or 2D input tensor")
.Input(1, "Y", "1D or 2D input tensor")
.Output(0, "Z", "1D output tensor")
.IdenticalTypeAndShapeOfInputDim(0, 0)
.Arg("pad_value", "the padding value for tensors with smaller dimension")
.Arg("replicate", "whether to replicate the smaller tensor or not");
OPERATOR_SCHEMA(DotProductWithPaddingGradient).NumInputs(3).NumOutputs(2);
class GetDotProductWithPaddingGradient : public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
vector<OperatorDef> GetGradientDefs() override {
float pad_value = 0;
bool replicate = false;
if (ArgumentHelper::HasArgument(Def(), "pad_value")) {
pad_value = GetArgument(Def(), "pad_value").f();
}
if (ArgumentHelper::HasArgument(Def(), "replicate")) {
replicate = GetArgument(Def(), "replicate").i();
}
const auto dot_arg = vector<Argument>{
MakeArgument<float>("pad_value", pad_value),
MakeArgument<bool>("replicate", replicate)};
return SingleGradientDef(
"DotProductWithPaddingGradient",
"",
vector<string>{I(0), I(1), GO(0)},
vector<string>{GI(0), GI(1)},
dot_arg);
}
};
REGISTER_GRADIENT(DotProductWithPadding, GetDotProductWithPaddingGradient);
} // namespace caffe2
|