1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
|
#ifndef CAFFE2_OPERATORS_DISTANCE_OP_H_
#define CAFFE2_OPERATORS_DISTANCE_OP_H_
#include "caffe2/core/context.h"
#include "caffe2/core/operator.h"
#include "caffe2/utils/math.h"
#include "c10/util/irange.h"
namespace caffe2 {
template <typename T, class Context>
class SquaredL2DistanceOp : public Operator<Context> {
public:
template <class... Args>
explicit SquaredL2DistanceOp(Args&&... args)
: Operator<Context>(std::forward<Args>(args)...) {}
USE_OPERATOR_CONTEXT_FUNCTIONS;
bool RunOnDevice() override;
protected:
// Input: X, Y; Output: Distance
};
template <typename T, class Context>
class SquaredL2DistanceGradientOp final : public Operator<Context> {
public:
template <class... Args>
explicit SquaredL2DistanceGradientOp(Args&&... args)
: Operator<Context>(std::forward<Args>(args)...) {}
USE_OPERATOR_CONTEXT_FUNCTIONS;
bool RunOnDevice() override {
auto& X = Input(0);
auto& Y = Input(1);
auto& dDistance = Input(2);
int N = X.dim() > 0 ? X.dim32(0) : 1;
int D = N > 0 ? X.numel() / N : 0;
CAFFE_ENFORCE(X.dim() == Y.dim());
for (const auto i : c10::irange(X.dim())) {
CAFFE_ENFORCE(X.dim32(i) == Y.dim32(i));
}
CAFFE_ENFORCE(dDistance.dim() == 1);
CAFFE_ENFORCE(dDistance.dim32(0) == N);
auto* dX = Output(0, X.sizes(), at::dtype<T>());
auto* dY = Output(1, Y.sizes(), at::dtype<T>());
math::Sub<T, Context>(
X.numel(),
X.template data<T>(),
Y.template data<T>(),
dX->template mutable_data<T>(),
&context_);
for (const auto i : c10::irange(N)) {
math::Scale<T, T, Context>(
D,
dDistance.template data<T>() + i,
dX->template data<T>() + i * D,
dX->template mutable_data<T>() + i * D,
&context_);
}
// The gradient of the other side is basically the negative.
math::Scale<T, T, Context>(
X.numel(),
-1,
dX->template data<T>(),
dY->template mutable_data<T>(),
&context_);
return true;
}
protected:
// Input: X, Y, dDistance; Output: dX, dY
};
template <typename T, class Context>
class L1DistanceOp : public Operator<Context> {
public:
template <class... Args>
explicit L1DistanceOp(Args&&... args)
: Operator<Context>(std::forward<Args>(args)...) {}
USE_OPERATOR_CONTEXT_FUNCTIONS;
bool RunOnDevice() override;
protected:
// Input: X, Y; Output: Distance
};
template <typename T, class Context>
class L1DistanceGradientOp : public Operator<Context> {
public:
template <class... Args>
explicit L1DistanceGradientOp(Args&&... args)
: Operator<Context>(std::forward<Args>(args)...) {}
USE_OPERATOR_CONTEXT_FUNCTIONS;
bool RunOnDevice() override;
protected:
// Input: X, Y, dDistance; Output: dX, dY
};
template <typename T, class Context>
class DotProductOp : public Operator<Context> {
public:
template <class... Args>
explicit DotProductOp(Args&&... args)
: Operator<Context>(std::forward<Args>(args)...) {}
USE_OPERATOR_CONTEXT_FUNCTIONS;
bool RunOnDevice() override;
protected:
INPUT_TAGS(X_IN, Y_IN);
OUTPUT_TAGS(DOT_OUT);
};
template <typename T, class Context>
class DotProductGradientOp final : public Operator<Context> {
public:
template <class... Args>
explicit DotProductGradientOp(Args&&... args)
: Operator<Context>(std::forward<Args>(args)...) {}
USE_OPERATOR_CONTEXT_FUNCTIONS;
bool RunOnDevice() override;
protected:
INPUT_TAGS(X_IN, Y_IN, DER_DOT_IN);
OUTPUT_TAGS(DER_X_OUT, DER_Y_OUT);
};
template <typename T, class Context>
class DotProductWithPaddingOp : public Operator<Context> {
public:
template <class... Args>
explicit DotProductWithPaddingOp(Args&&... args)
: Operator<Context>(std::forward<Args>(args)...),
pad_value_(this->template GetSingleArgument<float>("pad_value", 0.0)),
replicate_(this->template GetSingleArgument<bool>("replicate", false)) {
}
USE_OPERATOR_CONTEXT_FUNCTIONS;
bool RunOnDevice() override;
protected:
float pad_value_;
bool replicate_;
INPUT_TAGS(X_IN, Y_IN);
OUTPUT_TAGS(DOT_OUT);
};
template <typename T, class Context>
class CosineSimilarityOp : public Operator<Context> {
public:
template <class... Args>
explicit CosineSimilarityOp(Args&&... args)
: Operator<Context>(std::forward<Args>(args)...) {}
USE_OPERATOR_CONTEXT_FUNCTIONS;
bool RunOnDevice() override;
protected:
INPUT_TAGS(X_IN, Y_IN);
OUTPUT_TAGS(COS_OUT);
private:
Tensor aux_;
};
template <typename T, class Context>
class CosineSimilarityGradientOp final : public Operator<Context> {
public:
template <class... Args>
explicit CosineSimilarityGradientOp(Args&&... args)
: Operator<Context>(std::forward<Args>(args)...) {}
USE_OPERATOR_CONTEXT_FUNCTIONS;
bool RunOnDevice() override;
protected:
INPUT_TAGS(X_IN, Y_IN, DER_COS_IN);
OUTPUT_TAGS(DER_X_OUT, DER_Y_OUT);
private:
Tensor aux_;
};
template <typename T, class Context>
class DotProductWithPaddingGradientOp final : public Operator<Context> {
public:
template <class... Args>
explicit DotProductWithPaddingGradientOp(Args&&... args)
: Operator<Context>(std::forward<Args>(args)...),
pad_value_(this->template GetSingleArgument<float>("pad_value", 0.0)),
replicate_(this->template GetSingleArgument<bool>("replicate", false)) {
}
USE_OPERATOR_CONTEXT_FUNCTIONS;
bool RunOnDevice() override {
auto& X = Input(X_IN);
auto& Y = Input(Y_IN);
auto& dDot = Input(DER_DOT_IN);
int N, D, DX, DY, restD;
if (X.numel() > 0) {
N = X.dim() > 0 ? X.dim32(0) : 1;
DX = X.numel() / N;
DY = Y.numel() / N;
} else {
N = 0;
DX = 0;
DY = 0;
}
CAFFE_ENFORCE(!replicate_ || DX % DY == 0 || DY % DX == 0);
D = std::min(DX, DY);
restD = std::max(DX, DY) - D;
CAFFE_ENFORCE_EQ(X.dim(), Y.dim());
CAFFE_ENFORCE_EQ(X.dim32(0), Y.dim32(0));
CAFFE_ENFORCE_EQ(dDot.dim(), 1);
CAFFE_ENFORCE_EQ(dDot.dim32(0), N);
auto* dX = Output(DER_X_OUT, X.sizes(), at::dtype<T>());
auto* dY = Output(DER_Y_OUT, Y.sizes(), at::dtype<T>());
const auto* X_data = X.template data<T>();
const auto* Y_data = Y.template data<T>();
const auto* dDot_data = dDot.template data<T>();
auto* dX_data = dX->template mutable_data<T>();
auto* dY_data = dY->template mutable_data<T>();
for (const auto i : c10::irange(N)) { // TODO: multithreading
auto offsetX = i * DX;
auto offsetY = i * DY;
if (replicate_) {
// L_ for longer vector and S_ for shorter vector
const T *L_data, *S_data;
T *dL_data, *dS_data;
int DL, DS;
if (DX > DY) {
L_data = X_data + offsetX;
S_data = Y_data + offsetY;
dL_data = dX_data + offsetX;
dS_data = dY_data + offsetY;
DL = DX;
DS = DY;
} else {
L_data = Y_data + offsetY;
S_data = X_data + offsetX;
dL_data = dY_data + offsetY;
dS_data = dX_data + offsetX;
DL = DY;
DS = DX;
}
// TODO: get rid of temp memory use
std::vector<T> tmp_data(DS);
math::Set<T, Context>(DS, 0.0, dS_data, &context_);
for (int j = 0; j < DL / DS; j++) {
math::Scale<T, T, Context>(
DS, dDot_data[i], S_data, dL_data + j * DS, &context_);
math::Scale<T, T, Context>(
DS, dDot_data[i], L_data + j * DS, tmp_data.data(), &context_);
math::Axpy<float, T, Context>(
DS, 1.0, tmp_data.data(), dS_data, &context_);
}
} else {
math::Scale<T, T, Context>(
D, dDot_data[i], X_data + offsetX, dY_data + offsetY, &context_);
math::Scale<T, T, Context>(
D, dDot_data[i], Y_data + offsetY, dX_data + offsetX, &context_);
}
if (!replicate_ && DX != DY) {
T* rest_data;
if (DX > DY) {
rest_data = dX_data + offsetX + D;
} else {
rest_data = dY_data + offsetY + D;
}
auto pad_gradient = dDot_data[i] * pad_value_;
math::Set<T, Context>(restD, pad_gradient, rest_data, &context_);
}
}
return true;
}
protected:
float pad_value_;
bool replicate_;
INPUT_TAGS(X_IN, Y_IN, DER_DOT_IN);
OUTPUT_TAGS(DER_X_OUT, DER_Y_OUT);
};
} // namespace caffe2
#endif // CAFFE2_OPERATORS_DISTANCE_OP_H_
|