1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
|
#include "caffe2/core/context_gpu.h"
#include "caffe2/core/cudnn_wrappers.h"
#include "caffe2/core/operator.h"
#include "caffe2/core/types.h"
namespace caffe2 {
// cudnnRestoreDropoutDescriptor is needed for correctness and
// doesn't exist prior to cuDNN v7
#if CUDNN_VERSION_MIN(7,0,0)
class CuDNNDropoutOp final : public Operator<CUDAContext> {
public:
USE_OPERATOR_FUNCTIONS(CUDAContext);
explicit CuDNNDropoutOp(const OperatorDef& operator_def, Workspace* ws)
: Operator<CUDAContext>(operator_def, ws),
cudnn_wrapper_(&context_),
ratio_(OperatorBase::GetSingleArgument<float>("ratio", 0.5)),
is_test_(OperatorBase::GetSingleArgument<int>(OpSchema::Arg_IsTest, 0)),
states_initialized_(false),
random_seed_(operator_def.device_option().random_seed()) {
CAFFE_ENFORCE_GE(ratio_, 0);
CAFFE_ENFORCE_LT(ratio_, 1);
CUDNN_ENFORCE(cudnnCreateTensorDescriptor(&data_desc_));
CUDNN_ENFORCE(cudnnCreateDropoutDescriptor(&dropout_desc_));
CUDNN_ENFORCE(cudnnDropoutGetStatesSize(
cudnn_wrapper_.inline_cudnn_handle(),
reinterpret_cast<size_t*>(&states_size_in_bytes_)));
if (!is_test_) {
scratch_blob_ = ws->CreateBlob(scratch_blob_name(operator_def.output(1)));
CAFFE_ENFORCE(scratch_blob_);
}
}
~CuDNNDropoutOp() noexcept override {
CUDNN_ENFORCE(cudnnDestroyTensorDescriptor(data_desc_));
CUDNN_ENFORCE(cudnnDestroyDropoutDescriptor(dropout_desc_));
}
template <typename T, typename M>
bool DoRunWithType();
bool RunOnDevice() override;
static string scratch_blob_name(string mask_blob_name) {
return "cudnn_dropout_scratch_" + mask_blob_name;
}
protected:
CuDNNWrapper cudnn_wrapper_;
cudnnTensorDescriptor_t data_desc_;
cudnnDropoutDescriptor_t dropout_desc_;
vector<int64_t> cudnn_input_dims_;
float ratio_;
bool is_test_;
Blob* scratch_blob_ = nullptr;
size_t states_size_in_bytes_, reserve_space_size_in_bytes_;
// Input: X, Output: Y, mask_and_states
// track whether states have been initialized - only needs to happen once
bool states_initialized_;
// random seed
unsigned long long random_seed_;
};
class CuDNNDropoutGradientOp final : public Operator<CUDAContext> {
public:
USE_OPERATOR_FUNCTIONS(CUDAContext);
explicit CuDNNDropoutGradientOp(const OperatorDef& operator_def, Workspace* ws)
: Operator<CUDAContext>(operator_def, ws),
cudnn_wrapper_(&context_),
ratio_(OperatorBase::GetSingleArgument<float>("ratio", 0.5)),
is_test_(OperatorBase::GetSingleArgument<int>(OpSchema::Arg_IsTest, 0)),
states_initialized_(false),
random_seed_(operator_def.device_option().random_seed()) {
CAFFE_ENFORCE_GE(ratio_, 0);
CAFFE_ENFORCE_LT(ratio_, 1);
CUDNN_ENFORCE(cudnnCreateTensorDescriptor(&data_desc_));
CUDNN_ENFORCE(cudnnCreateDropoutDescriptor(&dropout_desc_));
CUDNN_ENFORCE(cudnnDropoutGetStatesSize(
cudnn_wrapper_.inline_cudnn_handle(),
reinterpret_cast<size_t*>(&states_size_in_bytes_)));
// Share scratch with the forward op
scratch_blob_ =
ws->GetBlob(CuDNNDropoutOp::scratch_blob_name(operator_def.input(1)));
CAFFE_ENFORCE(scratch_blob_);
}
~CuDNNDropoutGradientOp() noexcept override {
CUDNN_ENFORCE(cudnnDestroyTensorDescriptor(data_desc_));
CUDNN_ENFORCE(cudnnDestroyDropoutDescriptor(dropout_desc_));
}
template <typename T, typename M>
bool DoRunWithType();
bool RunOnDevice() override;
protected:
CuDNNWrapper cudnn_wrapper_;
cudnnTensorDescriptor_t data_desc_;
cudnnDropoutDescriptor_t dropout_desc_;
vector<int64_t> cudnn_input_dims_;
Blob* scratch_blob_;
float ratio_;
bool is_test_;
size_t states_size_in_bytes_, reserve_space_size_in_bytes_;
// Input: dY, mask_and_states, Output: dX
// only need to initialize states once (size is static)
bool states_initialized_;
unsigned long long random_seed_;
};
template <typename T, typename M>
bool CuDNNDropoutOp::DoRunWithType() {
const auto& X = Input(0);
auto* Y = Output(0);
auto size_prod = 1;
for (auto dim : X.sizes()) {
size_prod *= dim;
}
// now actually run the computation
if (is_test_) {
if (Y != &X) {
context_.CopySameDevice<T>(
X.numel(), X.template data<T>(), Y->template mutable_data<T>());
}
return true;
} else {
// Reshape tensor descriptors if necessary
if (X.sizes() != cudnn_input_dims_) {
CAFFE_ENFORCE(scratch_blob_);
Tensor* states = BlobGetMutableTensor(scratch_blob_, CUDA);
cudnn_input_dims_ = X.sizes().vec();
CUDNN_ENFORCE(cudnnSetTensor4dDescriptor(
data_desc_,
GetCudnnTensorFormat(StorageOrder::NCHW),
cudnnTypeWrapper<T>::type,
size_prod,
1,
1,
1));
// get the reserve space we need
CUDNN_ENFORCE(cudnnDropoutGetReserveSpaceSize(
data_desc_, &reserve_space_size_in_bytes_));
states->Resize(states_size_in_bytes_);
if (!states_initialized_) {
// set the dropout descriptor (note: need to allocate the states data
// before acquiring the mutex)
uint8_t* states_data = states->template mutable_data<uint8_t>();
{
// Need to protect as clashes with NCCL
std::lock_guard<std::mutex> lk(CUDAContext::mutex());
CUDNN_ENFORCE(cudnnSetDropoutDescriptor(
dropout_desc_,
cudnn_wrapper_.inline_cudnn_handle(),
ratio_,
states_data,
states_size_in_bytes_,
random_seed_
));
}
states_initialized_ = true;
}
}
auto* mask = Output(
1,
{static_cast<int64_t>(reserve_space_size_in_bytes_)},
at::dtype<uint8_t>());
CUDNN_ENFORCE(cudnnDropoutForward(
cudnn_wrapper_.inline_cudnn_handle(),
dropout_desc_,
data_desc_,
X.template data<T>(),
data_desc_,
Y->template mutable_data<T>(),
mask->template mutable_data<uint8_t>(),
reserve_space_size_in_bytes_));
}
return true;
}
bool CuDNNDropoutOp::RunOnDevice() {
// dispatch based on contents of tensor(s)
const auto& X = Input(0);
auto* Y = Output(0);
Y->ResizeLike(X);
if (X.IsType<float>()) {
return DoRunWithType<float, float>();
} else if (X.IsType<at::Half>()) {
return DoRunWithType<at::Half, float>();
}
return false;
}
template <typename T, typename M>
bool CuDNNDropoutGradientOp::DoRunWithType() {
const auto& dY = Input(0);
const auto& mask = Input(1);
const Tensor& states = scratch_blob_->Get<Tensor>();
auto* dX = Output(0);
auto size_prod = 1;
for (auto dim : dY.sizes()) {
size_prod *= dim;
}
if (!states_initialized_) {
// set the dropout descriptor
{
// Need to protect as clashes with NCCL
std::lock_guard<std::mutex> lk(CUDAContext::mutex());
CUDNN_ENFORCE(cudnnRestoreDropoutDescriptor(
dropout_desc_,
cudnn_wrapper_.inline_cudnn_handle(),
ratio_,
const_cast<uint8_t*>(states.data<uint8_t>()),
states_size_in_bytes_,
random_seed_
));
}
states_initialized_ = true;
}
if (dY.sizes() != cudnn_input_dims_) {
cudnn_input_dims_ = dY.sizes().vec();
CUDNN_ENFORCE(cudnnSetTensor4dDescriptor(
data_desc_,
GetCudnnTensorFormat(StorageOrder::NCHW),
cudnnTypeWrapper<T>::type,
size_prod,
1,
1,
1));
// get the reserve space we need
CUDNN_ENFORCE(cudnnDropoutGetReserveSpaceSize(
data_desc_, &reserve_space_size_in_bytes_));
}
// run the computation
void* mask_data = const_cast<void*>(mask.raw_data());
CUDNN_ENFORCE(cudnnDropoutBackward(
cudnn_wrapper_.inline_cudnn_handle(),
dropout_desc_,
data_desc_,
dY.data<T>(),
data_desc_,
dX->template mutable_data<T>(),
mask_data,
reserve_space_size_in_bytes_));
return true;
}
bool CuDNNDropoutGradientOp::RunOnDevice() {
// dispatch based on contents of tensor(s)
const auto& dY = Input(0);
auto* dX = Output(0);
dX->ResizeLike(dY);
if (dY.IsType<float>()) {
return DoRunWithType<float, float>();
} else if (dY.IsType<at::Half>()) {
return DoRunWithType<at::Half, float>();
}
return false;
}
namespace {
REGISTER_CUDNN_OPERATOR(Dropout, CuDNNDropoutOp);
REGISTER_CUDNN_OPERATOR(DropoutGrad, CuDNNDropoutGradientOp);
}
#endif
}; // namespace caffe2
|