1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
|
#include "elementwise_linear_op.h"
namespace caffe2 {
template<>
bool ElementwiseLinearOp<float, CPUContext>::RunOnDevice(){
const auto& X = Input(0);
const auto& a = Input(1);
const auto& b = Input(2);
const auto canonical_axis = X.canonical_axis_index(axis_);
const int N = X.size_to_dim(canonical_axis);
const int D = X.size_from_dim(canonical_axis);
CAFFE_ENFORCE_EQ(a.dim(), 1, a.dim());
CAFFE_ENFORCE_EQ(a.size(0), D, a.dim());
CAFFE_ENFORCE_EQ(b.dim(), 1, b.dim());
CAFFE_ENFORCE_EQ(b.size(0), D, b.dim());
auto* Y = Output(0, X.sizes(), at::dtype<float>());
const float* X_data = X.data<float>();
const float* a_data = a.data<float>();
const float* b_data = b.data<float>();
float* Y_data = Y->template mutable_data<float>();
int p = 0;
for (int n = 0; n < N; ++n) {
for (int d = 0; d < D; ++d) {
Y_data[p] = X_data[p] * a_data[d] + b_data[d];
p++;
}
}
return true;
}
template<>
bool ElementwiseLinearGradientOp<float, CPUContext>::RunOnDevice(){
const auto& g_o = Input(0);
const auto& X = Input(1);
const auto& a = Input(2);
const auto canonical_axis = X.canonical_axis_index(axis_);
const int N = X.size_to_dim(canonical_axis);
const int D = X.size_from_dim(canonical_axis);
CAFFE_ENFORCE_EQ(a.dim(), 1, a.dim());
CAFFE_ENFORCE_EQ(a.size(0), D, a.dim());
auto* g_X = Output(0, X.sizes(), at::dtype<float>());
auto* g_a = Output(1, a.sizes(), at::dtype<float>());
auto* g_b = Output(2, a.sizes(), at::dtype<float>());
const float* g_o_data = g_o.data<float>();
const float* X_data = X.data<float>();
const float* a_data = a.data<float>();
float* g_X_data = g_X->template mutable_data<float>();
float* g_a_data = g_a->template mutable_data<float>();
float* g_b_data = g_b->template mutable_data<float>();
math::Set<float, CPUContext>(g_a->numel(), 0.f, g_a_data, &context_);
math::Set<float, CPUContext>(g_b->numel(), 0.f, g_b_data, &context_);
int p = 0;
for (int n = 0; n < N; ++n) {
for (int d = 0; d < D; ++d) {
g_X_data[p] = g_o_data[p] * a_data[d];
g_a_data[d] += g_o_data[p] * X_data[p];
g_b_data[d] += g_o_data[p];
p++;
}
}
return true;
}
REGISTER_CPU_OPERATOR(
ElementwiseLinear,
ElementwiseLinearOp<float, CPUContext>);
REGISTER_CPU_OPERATOR(
ElementwiseLinearGradient,
ElementwiseLinearGradientOp<float, CPUContext>);
OPERATOR_SCHEMA(ElementwiseLinear)
.NumInputs(3)
.NumOutputs(1)
.SetDoc(R"DOC(
This op computes the elementwise linear combination of a batch of input vectors with a weight vector and bias vector. As input, the op takes an input tensor $X$ of shape $NxD$, a weight vector $w$ of length $D$, and a bias vector $b$ of length $D$. Here, $N$ represents the batch size and $D$ represents the length of the feature vectors. The output, $Y$, is a tensor of shape $NxD$ and is calculated as
$$Y_{ij} = X_{ij}w_j + b_j \ for \ i\in{N}, j\in{D}$$
Github Links:
- https://github.com/pytorch/pytorch/blob/master/caffe2/operators/elementwise_linear_op.h
- https://github.com/pytorch/pytorch/blob/master/caffe2/operators/elementwise_linear_op.cc
<details>
<summary> <b>Example</b> </summary>
**Code**
```
workspace.ResetWorkspace()
op = core.CreateOperator(
"ElementwiseLinear",
["X", "w", "b"],
["Y"]
)
// Create X
X = np.array([[1,2,3,4,5],[6,8,9,16,10]])
print("X:\n",X)
// Create w
w = np.array([1,1/2.,1/3.,1/4.,1/5.])
print("w:\n",w)
// Create b
b = np.array([1.,1.,1.,1.,1.])
print("b:\n",b)
// Feed X & w & b into workspace
workspace.FeedBlob("X", X.astype(np.float32))
workspace.FeedBlob("w", w.astype(np.float32))
workspace.FeedBlob("b", b.astype(np.float32))
// Run op
workspace.RunOperatorOnce(op)
// Collect Output
print("Y:\n", workspace.FetchBlob("Y"))
```
**Result**
```
X:
[[ 1 2 3 4 5]
[ 6 8 9 16 10]]
w:
[1. 0.5 0.33333333 0.25 0.2]
b:
[1. 1. 1. 1. 1.]
Y:
[[2. 2. 2. 2. 2.]
[7. 5. 4. 5. 3.]]
```
</details>
)DOC")
.Input(
0,
"X",
"2D input tensor of size $NxD$. This input represents the input data to be operated on.")
.Input(
1,
"w",
"1D scaling factors, or weights, of size $D$. This input contains the weights that will be multiplied by the data.")
.Input(
2,
"b",
"1D biases of size $D$. This input contains the biases that will be added to the products of the weights and data.")
.Output(
0,
"Y",
"2D output tensor of size $NxD$. Calculated as described above.")
.Arg(
"axis",
"*(type: int; default: 1)* Describes the axis of the inputs; defaults to one because the 0th axis most likely describes the batch size.")
.InheritOnnxSchema();
OPERATOR_SCHEMA(ElementwiseLinearGradient)
.NumInputs(3)
.NumOutputs(3);
struct GetElementwiseLinearGradient : public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
vector<OperatorDef> GetGradientDefs() override {
return SingleGradientDef(
"ElementwiseLinearGradient",
"",
vector<string>{GO(0), I(0), I(1)},
vector<string>{GI(0), GI(1), GI(2)});
}
};
REGISTER_GRADIENT(
ElementwiseLinear,
GetElementwiseLinearGradient
);
} // namespace caffe2
|