1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
|
#include "caffe2/operators/elementwise_mul_op.h"
#include <algorithm>
#include <functional>
#include "caffe2/utils/cub_namespace.cuh"
#include <cub/block/block_reduce.cuh>
#include "caffe2/core/context_gpu.h"
#include "caffe2/operators/elementwise_ops_utils.h"
#include "caffe2/utils/fixed_divisor.h"
namespace caffe2 {
namespace {
template <typename T>
using BlockReduce = cub::BlockReduce<T, CAFFE_CUDA_NUM_THREADS>;
template <typename TGrad, typename TIn, int D>
__global__ void ComputeMulGradientCUDAKernel(
const int outer_size,
const int inner_size,
const SimpleArray<FixedDivisor<int>, D> Y_dims,
const SimpleArray<int, D> Y_strides,
const SimpleArray<int, D> W_strides,
const SimpleArray<FixedDivisor<int>, D> X_dims,
const TGrad* dY,
const TIn* W,
TGrad* dX) {
__shared__ typename BlockReduce<TGrad>::TempStorage temp_storage;
int valid = min(inner_size, CAFFE_CUDA_NUM_THREADS);
for (int i = blockIdx.x; i < outer_size; i += gridDim.x) {
TGrad sum = 0;
for (int j = threadIdx.x; j < inner_size; j += blockDim.x) {
const int X_index = i * inner_size + j;
int Y_index = 0;
int X_index_val = X_index;
#pragma unroll
for (int d = D - 1; d >= 0; --d) {
int r;
X_dims.data[d].DivMod(X_index_val, &X_index_val, &r);
Y_index += r * Y_strides.data[d];
}
int W_index = 0;
int Y_index_val = Y_index;
#pragma unroll
for (int d = D - 1; d >= 0; --d) {
int r;
Y_dims.data[d].DivMod(Y_index_val, &Y_index_val, &r);
W_index += r * W_strides.data[d];
}
#if __CUDA_ARCH__ >= 350
sum += __ldg(dY + Y_index) * __ldg(W + W_index);
#else
sum += dY[Y_index] * W[W_index];
#endif
}
sum = BlockReduce<TGrad>(temp_storage).Sum(sum, valid);
if (threadIdx.x == 0) {
dX[i] = sum;
}
__syncthreads();
}
}
template <typename TGrad, typename TIn, int D>
__global__ void ComputeMulGradientOuterCUDAKernel(
const int outer_size,
const SimpleArray<FixedDivisor<int>, D> Y_dims,
const SimpleArray<int, D> Y_strides,
const SimpleArray<int, D> W_strides,
const SimpleArray<FixedDivisor<int>, D> X_dims,
const TGrad* dY,
const TIn* W,
TGrad* dX) {
CUDA_1D_KERNEL_LOOP(i, outer_size) {
TGrad sum = 0;
const int X_index = i;
int Y_index = 0;
int X_index_val = X_index;
#pragma unroll
for (int d = D - 1; d >= 0; --d) {
int r;
X_dims.data[d].DivMod(X_index_val, &X_index_val, &r);
Y_index += r * Y_strides.data[d];
}
int W_index = 0;
int Y_index_val = Y_index;
#pragma unroll
for (int d = D - 1; d >= 0; --d) {
int r;
Y_dims.data[d].DivMod(Y_index_val, &Y_index_val, &r);
W_index += r * W_strides.data[d];
}
#if __CUDA_ARCH__ >= 350
sum += __ldg(dY + Y_index) * __ldg(W + W_index);
#else
sum += dY[Y_index] * W[W_index];
#endif
dX[i] = sum;
}
}
template <typename TGrad, typename TIn, int D>
void ComputeMulGradientCUDAImpl(
const int outer_size,
const int inner_size,
const int* Y_dims,
const int* W_dims,
const int* X_axes,
const TGrad* dY,
const TIn* W,
TGrad* dX,
CUDAContext* context) {
SimpleArray<FixedDivisor<int>, D> Y_dims_arr;
SimpleArray<int, D> Y_strides_arr;
SimpleArray<int, D> W_strides_arr;
SimpleArray<FixedDivisor<int>, D> X_dims_arr;
for (int i = 0; i < D; ++i) {
Y_dims_arr.data[i] = FixedDivisor<int>(Y_dims[i]);
X_dims_arr.data[i] = FixedDivisor<int>(Y_dims[X_axes[i]]);
}
math::utils::ComputeTransposedStrides(D, Y_dims, X_axes, Y_strides_arr.data);
int cur_stride = 1;
for (int i = D - 1; i >= 0; --i) {
W_strides_arr.data[i] = W_dims[i] == 1 ? 0 : cur_stride;
cur_stride *= W_dims[i];
}
if (inner_size == 1) {
ComputeMulGradientOuterCUDAKernel<TGrad, TIn, D>
<<<CAFFE_MAXIMUM_NUM_BLOCKS,
CAFFE_CUDA_NUM_THREADS,
0,
context->cuda_stream()>>>(
outer_size,
Y_dims_arr,
Y_strides_arr,
W_strides_arr,
X_dims_arr,
dY,
W,
dX);
C10_CUDA_KERNEL_LAUNCH_CHECK();
} else {
int threads = std::min(inner_size, CAFFE_CUDA_NUM_THREADS);
ComputeMulGradientCUDAKernel<TGrad, TIn, D>
<<<std::min(outer_size, CAFFE_MAXIMUM_NUM_BLOCKS),
threads,
0,
context->cuda_stream()>>>(
outer_size,
inner_size,
Y_dims_arr,
Y_strides_arr,
W_strides_arr,
X_dims_arr,
dY,
W,
dX);
C10_CUDA_KERNEL_LAUNCH_CHECK();
}
}
template <typename TGrad, typename TIn>
void ComputeMulGradientCUDA(
const std::vector<int>& Y_dims,
const std::vector<int>& W_dims,
const std::vector<int>& X_axes,
const TGrad* dY,
const TIn* W,
TGrad* dX,
CUDAContext* context) {
CAFFE_ENFORCE_EQ(Y_dims.size(), W_dims.size());
const int ndim = Y_dims.size();
std::vector<int> X_transpose_axes(ndim);
math::utils::ComputeTransposeAxesForReduceOp(
ndim, X_axes.size(), X_axes.data(), X_transpose_axes.data());
const int pivot = ndim - X_axes.size();
int outer_size = 1;
for (int i = 0; i < pivot; ++i) {
outer_size *= Y_dims[X_transpose_axes[i]];
}
int inner_size = 1;
for (int i = pivot; i < ndim; ++i) {
inner_size *= Y_dims[X_transpose_axes[i]];
}
if (outer_size > 0 && inner_size > 0) {
DISPATCH_FUNCTION_BY_VALUE_WITH_TYPE_2(
ndim,
ComputeMulGradientCUDAImpl,
TGrad,
TIn,
outer_size,
inner_size,
Y_dims.data(),
W_dims.data(),
X_transpose_axes.data(),
dY,
W,
dX,
context);
} else if (outer_size > 0) {
math::Set<TGrad, CUDAContext>(outer_size, TGrad(0), dX, context);
}
}
} // namespace
template <>
template <typename TGrad, typename TIn, typename TOut>
bool MulFunctor<CUDAContext>::Backward(
const std::vector<int>& A_dims,
const std::vector<int>& B_dims,
const TGrad* dC,
const TIn* A,
const TIn* B,
const TOut* /* C */,
TGrad* dA,
TGrad* dB,
CUDAContext* context) const {
if (dA != nullptr) {
CAFFE_ENFORCE_NE(dA, dB, "Outputs dA and dB should point to distinct blobs");
}
if (A_dims == B_dims) {
if (dC == dA) {
// Ensure operation can be performed in-place.
// We want to avoid clobbering dC if it aliases dA.
std::swap(A, B);
std::swap(dA, dB);
}
const int size = std::accumulate(
A_dims.cbegin(), A_dims.cend(), 1, std::multiplies<int>());
math::Mul(size, dC, B, dA, context);
math::Mul(size, dC, A, dB, context);
return true;
}
const int ndim = std::max(A_dims.size(), B_dims.size());
std::vector<int> A_broadcast_dims(ndim);
std::vector<int> B_broadcast_dims(ndim);
std::vector<int> C_broadcast_dims(ndim);
math::utils::ComputeBroadcastBinaryOpDims(
A_dims.size(),
A_dims.data(),
B_dims.size(),
B_dims.data(),
A_broadcast_dims.data(),
B_broadcast_dims.data(),
C_broadcast_dims.data());
std::vector<int> A_axes;
std::vector<int> B_axes;
elementwise_ops_utils::ComputeBinaryBroadcastBackwardAxes(
A_dims, B_dims, &A_axes, &B_axes);
ComputeMulGradientCUDA<TGrad, TIn>(
C_broadcast_dims, B_broadcast_dims, A_axes, dC, B, dA, context);
ComputeMulGradientCUDA<TGrad, TIn>(
C_broadcast_dims, A_broadcast_dims, B_axes, dC, A, dB, context);
return true;
}
REGISTER_CUDA_OPERATOR(
Mul,
BinaryElementwiseOp<NumericTypes, CUDAContext, MulFunctor<CUDAContext>>);
REGISTER_CUDA_OPERATOR(
MulGradient,
BinaryElementwiseGradientOp<
NumericTypes,
CUDAContext,
MulFunctor<CUDAContext>>);
} // namespace caffe2
|