File: elementwise_mul_op.cu

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (269 lines) | stat: -rw-r--r-- 7,850 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
#include "caffe2/operators/elementwise_mul_op.h"

#include <algorithm>
#include <functional>

#include "caffe2/utils/cub_namespace.cuh"
#include <cub/block/block_reduce.cuh>

#include "caffe2/core/context_gpu.h"
#include "caffe2/operators/elementwise_ops_utils.h"
#include "caffe2/utils/fixed_divisor.h"

namespace caffe2 {

namespace {

template <typename T>
using BlockReduce = cub::BlockReduce<T, CAFFE_CUDA_NUM_THREADS>;

template <typename TGrad, typename TIn, int D>
__global__ void ComputeMulGradientCUDAKernel(
    const int outer_size,
    const int inner_size,
    const SimpleArray<FixedDivisor<int>, D> Y_dims,
    const SimpleArray<int, D> Y_strides,
    const SimpleArray<int, D> W_strides,
    const SimpleArray<FixedDivisor<int>, D> X_dims,
    const TGrad* dY,
    const TIn* W,
    TGrad* dX) {
  __shared__ typename BlockReduce<TGrad>::TempStorage temp_storage;
  int valid = min(inner_size, CAFFE_CUDA_NUM_THREADS);
  for (int i = blockIdx.x; i < outer_size; i += gridDim.x) {
    TGrad sum = 0;
    for (int j = threadIdx.x; j < inner_size; j += blockDim.x) {
      const int X_index = i * inner_size + j;
      int Y_index = 0;
      int X_index_val = X_index;
#pragma unroll
      for (int d = D - 1; d >= 0; --d) {
        int r;
        X_dims.data[d].DivMod(X_index_val, &X_index_val, &r);
        Y_index += r * Y_strides.data[d];
      }
      int W_index = 0;
      int Y_index_val = Y_index;
#pragma unroll
      for (int d = D - 1; d >= 0; --d) {
        int r;
        Y_dims.data[d].DivMod(Y_index_val, &Y_index_val, &r);
        W_index += r * W_strides.data[d];
      }
#if __CUDA_ARCH__ >= 350
      sum += __ldg(dY + Y_index) * __ldg(W + W_index);
#else
      sum += dY[Y_index] * W[W_index];
#endif
    }
    sum = BlockReduce<TGrad>(temp_storage).Sum(sum, valid);
    if (threadIdx.x == 0) {
      dX[i] = sum;
    }
    __syncthreads();
  }
}
template <typename TGrad, typename TIn, int D>
__global__ void ComputeMulGradientOuterCUDAKernel(
    const int outer_size,
    const SimpleArray<FixedDivisor<int>, D> Y_dims,
    const SimpleArray<int, D> Y_strides,
    const SimpleArray<int, D> W_strides,
    const SimpleArray<FixedDivisor<int>, D> X_dims,
    const TGrad* dY,
    const TIn* W,
    TGrad* dX) {
  CUDA_1D_KERNEL_LOOP(i, outer_size) {
    TGrad sum = 0;
    const int X_index = i;
    int Y_index = 0;
    int X_index_val = X_index;
#pragma unroll
    for (int d = D - 1; d >= 0; --d) {
      int r;
      X_dims.data[d].DivMod(X_index_val, &X_index_val, &r);
      Y_index += r * Y_strides.data[d];
    }
    int W_index = 0;
    int Y_index_val = Y_index;
#pragma unroll
    for (int d = D - 1; d >= 0; --d) {
      int r;
      Y_dims.data[d].DivMod(Y_index_val, &Y_index_val, &r);
      W_index += r * W_strides.data[d];
    }
#if __CUDA_ARCH__ >= 350
    sum += __ldg(dY + Y_index) * __ldg(W + W_index);
#else
    sum += dY[Y_index] * W[W_index];
#endif
    dX[i] = sum;
  }
}
template <typename TGrad, typename TIn, int D>
void ComputeMulGradientCUDAImpl(
    const int outer_size,
    const int inner_size,
    const int* Y_dims,
    const int* W_dims,
    const int* X_axes,
    const TGrad* dY,
    const TIn* W,
    TGrad* dX,
    CUDAContext* context) {
  SimpleArray<FixedDivisor<int>, D> Y_dims_arr;
  SimpleArray<int, D> Y_strides_arr;
  SimpleArray<int, D> W_strides_arr;
  SimpleArray<FixedDivisor<int>, D> X_dims_arr;
  for (int i = 0; i < D; ++i) {
    Y_dims_arr.data[i] = FixedDivisor<int>(Y_dims[i]);
    X_dims_arr.data[i] = FixedDivisor<int>(Y_dims[X_axes[i]]);
  }
  math::utils::ComputeTransposedStrides(D, Y_dims, X_axes, Y_strides_arr.data);
  int cur_stride = 1;
  for (int i = D - 1; i >= 0; --i) {
    W_strides_arr.data[i] = W_dims[i] == 1 ? 0 : cur_stride;
    cur_stride *= W_dims[i];
  }
  if (inner_size == 1) {
    ComputeMulGradientOuterCUDAKernel<TGrad, TIn, D>
        <<<CAFFE_MAXIMUM_NUM_BLOCKS,
           CAFFE_CUDA_NUM_THREADS,
           0,
           context->cuda_stream()>>>(
            outer_size,
            Y_dims_arr,
            Y_strides_arr,
            W_strides_arr,
            X_dims_arr,
            dY,
            W,
            dX);
    C10_CUDA_KERNEL_LAUNCH_CHECK();
  } else {
    int threads = std::min(inner_size, CAFFE_CUDA_NUM_THREADS);
    ComputeMulGradientCUDAKernel<TGrad, TIn, D>
        <<<std::min(outer_size, CAFFE_MAXIMUM_NUM_BLOCKS),
           threads,
           0,
           context->cuda_stream()>>>(
            outer_size,
            inner_size,
            Y_dims_arr,
            Y_strides_arr,
            W_strides_arr,
            X_dims_arr,
            dY,
            W,
            dX);
    C10_CUDA_KERNEL_LAUNCH_CHECK();
  }
}

template <typename TGrad, typename TIn>
void ComputeMulGradientCUDA(
    const std::vector<int>& Y_dims,
    const std::vector<int>& W_dims,
    const std::vector<int>& X_axes,
    const TGrad* dY,
    const TIn* W,
    TGrad* dX,
    CUDAContext* context) {
  CAFFE_ENFORCE_EQ(Y_dims.size(), W_dims.size());
  const int ndim = Y_dims.size();
  std::vector<int> X_transpose_axes(ndim);
  math::utils::ComputeTransposeAxesForReduceOp(
      ndim, X_axes.size(), X_axes.data(), X_transpose_axes.data());
  const int pivot = ndim - X_axes.size();
  int outer_size = 1;
  for (int i = 0; i < pivot; ++i) {
    outer_size *= Y_dims[X_transpose_axes[i]];
  }
  int inner_size = 1;
  for (int i = pivot; i < ndim; ++i) {
    inner_size *= Y_dims[X_transpose_axes[i]];
  }
  if (outer_size > 0 && inner_size > 0) {
    DISPATCH_FUNCTION_BY_VALUE_WITH_TYPE_2(
        ndim,
        ComputeMulGradientCUDAImpl,
        TGrad,
        TIn,
        outer_size,
        inner_size,
        Y_dims.data(),
        W_dims.data(),
        X_transpose_axes.data(),
        dY,
        W,
        dX,
        context);
  } else if (outer_size > 0) {
    math::Set<TGrad, CUDAContext>(outer_size, TGrad(0), dX, context);
  }
}

} // namespace

template <>
template <typename TGrad, typename TIn, typename TOut>
bool MulFunctor<CUDAContext>::Backward(
    const std::vector<int>& A_dims,
    const std::vector<int>& B_dims,
    const TGrad* dC,
    const TIn* A,
    const TIn* B,
    const TOut* /* C */,
    TGrad* dA,
    TGrad* dB,
    CUDAContext* context) const {
  if (dA != nullptr) {
    CAFFE_ENFORCE_NE(dA, dB, "Outputs dA and dB should point to distinct blobs");
  }
  if (A_dims == B_dims) {
    if (dC == dA) {
      // Ensure operation can be performed in-place.
      // We want to avoid clobbering dC if it aliases dA.
      std::swap(A, B);
      std::swap(dA, dB);
    }
    const int size = std::accumulate(
        A_dims.cbegin(), A_dims.cend(), 1, std::multiplies<int>());
    math::Mul(size, dC, B, dA, context);
    math::Mul(size, dC, A, dB, context);
    return true;
  }
  const int ndim = std::max(A_dims.size(), B_dims.size());
  std::vector<int> A_broadcast_dims(ndim);
  std::vector<int> B_broadcast_dims(ndim);
  std::vector<int> C_broadcast_dims(ndim);
  math::utils::ComputeBroadcastBinaryOpDims(
      A_dims.size(),
      A_dims.data(),
      B_dims.size(),
      B_dims.data(),
      A_broadcast_dims.data(),
      B_broadcast_dims.data(),
      C_broadcast_dims.data());
  std::vector<int> A_axes;
  std::vector<int> B_axes;
  elementwise_ops_utils::ComputeBinaryBroadcastBackwardAxes(
      A_dims, B_dims, &A_axes, &B_axes);
  ComputeMulGradientCUDA<TGrad, TIn>(
      C_broadcast_dims, B_broadcast_dims, A_axes, dC, B, dA, context);
  ComputeMulGradientCUDA<TGrad, TIn>(
      C_broadcast_dims, A_broadcast_dims, B_axes, dC, A, dB, context);
  return true;
}

REGISTER_CUDA_OPERATOR(
    Mul,
    BinaryElementwiseOp<NumericTypes, CUDAContext, MulFunctor<CUDAContext>>);
REGISTER_CUDA_OPERATOR(
    MulGradient,
    BinaryElementwiseGradientOp<
        NumericTypes,
        CUDAContext,
        MulFunctor<CUDAContext>>);

} // namespace caffe2