1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
|
#ifndef CAFFE2_OPERATORS_ELEMENTWISE_OP_TEST_H_
#define CAFFE2_OPERATORS_ELEMENTWISE_OP_TEST_H_
#include "caffe2/operators/elementwise_ops.h"
#include <iostream>
#include <string>
#include <vector>
#include <gtest/gtest.h>
template <typename Context, typename T>
void CopyVector(const int N, const T* x, T* y);
template <typename Context, typename I_Type, typename O_Type>
void FillTensor(
caffe2::Workspace* ws,
const std::string& name,
const std::vector<int64_t>& shape,
const std::vector<I_Type>& values) {
auto* blob = ws->CreateBlob(name);
auto* tensor = BlobGetMutableTensor(blob, Context::GetDeviceType());
tensor->Resize(shape);
auto* mutable_data = tensor->template mutable_data<O_Type>();
const O_Type* data = reinterpret_cast<const O_Type*>(values.data());
CopyVector<Context, O_Type>(values.size(), data, mutable_data);
}
template <typename Context>
caffe2::OperatorDef CreateOperatorDef() {
caffe2::OperatorDef def;
return def;
}
template <typename Context>
caffe2::OperatorDef DefineOperator(const std::string& op_type) {
caffe2::OperatorDef def = CreateOperatorDef<Context>();
def.set_name("test");
def.set_type(op_type);
def.add_input("X");
def.add_input("Y");
def.add_output("Z");
return def;
}
template <typename Context>
void elementwiseAnd() {
const int N = 4;
const int M = 2;
caffe2::Workspace ws;
auto def = DefineOperator<Context>("And");
{ // equal size
FillTensor<Context, uint8_t, bool>(
&ws, "X", {N}, {true, false, true, false});
FillTensor<Context, uint8_t, bool>(
&ws, "Y", {N}, {true, true, false, false});
std::unique_ptr<caffe2::OperatorBase> op(caffe2::CreateOperator(def, &ws));
EXPECT_NE(nullptr, op.get());
EXPECT_TRUE(op->Run());
auto* blob = ws.GetBlob("Z");
EXPECT_NE(nullptr, blob);
caffe2::Tensor Z(blob->Get<caffe2::Tensor>(), caffe2::CPU);
EXPECT_EQ(Z.numel(), N);
std::vector<bool> result{true, false, false, false};
for (const auto i : c10::irange(Z.numel())) {
EXPECT_EQ(Z.template data<bool>()[i], result[i]);
}
}
{ // broadcast
auto* arg = def.add_arg();
arg->set_name("broadcast");
arg->set_i(1);
FillTensor<Context, uint8_t, bool>(
&ws, "X", {M, N}, {true, false, true, false, true, false, true, false});
FillTensor<Context, uint8_t, bool>(
&ws, "Y", {N}, {true, true, false, false});
std::unique_ptr<caffe2::OperatorBase> op(caffe2::CreateOperator(def, &ws));
EXPECT_NE(nullptr, op.get());
EXPECT_TRUE(op->Run());
auto* blob = ws.GetBlob("Z");
EXPECT_NE(nullptr, blob);
caffe2::Tensor Z(blob->Get<caffe2::Tensor>(), caffe2::CPU);
EXPECT_EQ(Z.numel(), M * N);
std::vector<bool> result{
true, false, false, false, true, false, false, false};
for (const auto i : c10::irange(Z.numel())) {
EXPECT_EQ(Z.template data<bool>()[i], result[i]);
}
}
}
template <typename Context>
void elementwiseOr() {
const int N = 4;
const int M = 2;
caffe2::Workspace ws;
auto def = DefineOperator<Context>("Or");
{ // equal size
FillTensor<Context, uint8_t, bool>(
&ws, "X", {N}, {true, false, true, false});
FillTensor<Context, uint8_t, bool>(
&ws, "Y", {N}, {true, true, false, false});
std::unique_ptr<caffe2::OperatorBase> op(caffe2::CreateOperator(def, &ws));
EXPECT_NE(nullptr, op.get());
EXPECT_TRUE(op->Run());
auto* blob = ws.GetBlob("Z");
EXPECT_NE(nullptr, blob);
caffe2::Tensor Z(blob->Get<caffe2::Tensor>(), caffe2::CPU);
EXPECT_EQ(Z.numel(), N);
std::vector<bool> result{true, true, true, false};
for (const auto i : c10::irange(Z.numel())) {
EXPECT_EQ(Z.template data<bool>()[i], result[i]);
}
}
{ // broadcast
auto* arg = def.add_arg();
arg->set_name("broadcast");
arg->set_i(1);
FillTensor<Context, uint8_t, bool>(
&ws, "X", {M, N}, {true, false, true, false, true, false, true, false});
FillTensor<Context, uint8_t, bool>(
&ws, "Y", {N}, {true, true, false, false});
std::unique_ptr<caffe2::OperatorBase> op(caffe2::CreateOperator(def, &ws));
EXPECT_NE(nullptr, op.get());
EXPECT_TRUE(op->Run());
auto* blob = ws.GetBlob("Z");
EXPECT_NE(nullptr, blob);
caffe2::Tensor Z(blob->Get<caffe2::Tensor>(), caffe2::CPU);
EXPECT_EQ(Z.numel(), M * N);
std::vector<bool> result{true, true, true, false, true, true, true, false};
for (const auto i : c10::irange(Z.numel())) {
EXPECT_EQ(Z.template data<bool>()[i], result[i]);
}
}
}
template <typename Context>
void elementwiseXor() {
const int N = 4;
const int M = 2;
caffe2::Workspace ws;
auto def = DefineOperator<Context>("Xor");
{ // equal size
FillTensor<Context, uint8_t, bool>(
&ws, "X", {N}, {true, false, true, false});
FillTensor<Context, uint8_t, bool>(
&ws, "Y", {N}, {true, true, false, false});
std::unique_ptr<caffe2::OperatorBase> op(caffe2::CreateOperator(def, &ws));
EXPECT_NE(nullptr, op.get());
EXPECT_TRUE(op->Run());
auto* blob = ws.GetBlob("Z");
EXPECT_NE(nullptr, blob);
caffe2::Tensor Z(blob->Get<caffe2::Tensor>(), caffe2::CPU);
EXPECT_EQ(Z.numel(), N);
std::vector<bool> result{false, true, true, false};
for (const auto i : c10::irange(Z.numel())) {
EXPECT_EQ(Z.template data<bool>()[i], result[i]);
}
}
{ // broadcast
auto* arg = def.add_arg();
arg->set_name("broadcast");
arg->set_i(1);
FillTensor<Context, uint8_t, bool>(
&ws, "X", {M, N}, {true, false, true, false, true, false, true, false});
FillTensor<Context, uint8_t, bool>(
&ws, "Y", {N}, {true, true, false, false});
std::unique_ptr<caffe2::OperatorBase> op(caffe2::CreateOperator(def, &ws));
EXPECT_NE(nullptr, op.get());
EXPECT_TRUE(op->Run());
auto* blob = ws.GetBlob("Z");
EXPECT_NE(nullptr, blob);
caffe2::Tensor Z(blob->Get<caffe2::Tensor>(), caffe2::CPU);
EXPECT_EQ(Z.numel(), M * N);
std::vector<bool> result{
false, true, true, false, false, true, true, false};
for (const auto i : c10::irange(Z.numel())) {
EXPECT_EQ(Z.template data<bool>()[i], result[i]);
}
}
}
template <typename Context>
void elementwiseNot() {
const int N = 2;
caffe2::Workspace ws;
caffe2::OperatorDef def = CreateOperatorDef<Context>();
def.set_name("test");
def.set_type("Not");
def.add_input("X");
def.add_output("Y");
FillTensor<Context, uint8_t, bool>(&ws, "X", {N}, {true, false});
std::unique_ptr<caffe2::OperatorBase> op(caffe2::CreateOperator(def, &ws));
EXPECT_NE(nullptr, op.get());
EXPECT_TRUE(op->Run());
auto* blob = ws.GetBlob("Y");
EXPECT_NE(nullptr, blob);
caffe2::Tensor Y(blob->Get<caffe2::Tensor>(), caffe2::CPU);
EXPECT_EQ(Y.numel(), N);
std::vector<bool> result{false, true};
for (const auto i : c10::irange(Y.numel())) {
EXPECT_EQ(Y.template data<bool>()[i], result[i]);
}
}
template <typename Context>
void elementwiseEQ() {
const int N = 4;
const int M = 2;
caffe2::Workspace ws;
auto def = DefineOperator<Context>("EQ");
{ // equal size
FillTensor<Context, int32_t, int32_t>(&ws, "X", {N}, {1, 100, 5, -10});
FillTensor<Context, int32_t, int32_t>(&ws, "Y", {N}, {0, 100, 4, -10});
std::unique_ptr<caffe2::OperatorBase> op(caffe2::CreateOperator(def, &ws));
EXPECT_NE(nullptr, op.get());
EXPECT_TRUE(op->Run());
auto* blob = ws.GetBlob("Z");
EXPECT_NE(nullptr, blob);
caffe2::Tensor Z(blob->Get<caffe2::Tensor>(), caffe2::CPU);
EXPECT_EQ(Z.numel(), N);
std::vector<bool> result{false, true, false, true};
for (const auto i : c10::irange(Z.numel())) {
EXPECT_EQ(Z.template data<bool>()[i], result[i]);
}
}
{ // boolean
FillTensor<Context, uint8_t, bool>(
&ws, "X", {N}, {true, false, false, true});
FillTensor<Context, uint8_t, bool>(
&ws, "Y", {N}, {true, false, true, false});
std::unique_ptr<caffe2::OperatorBase> op(caffe2::CreateOperator(def, &ws));
EXPECT_NE(nullptr, op.get());
EXPECT_TRUE(op->Run());
auto* blob = ws.GetBlob("Z");
EXPECT_NE(nullptr, blob);
caffe2::Tensor Z(blob->Get<caffe2::Tensor>(), caffe2::CPU);
EXPECT_EQ(Z.numel(), N);
std::vector<bool> result{true, true, false, false};
for (const auto i : c10::irange(Z.numel())) {
EXPECT_EQ(Z.template data<bool>()[i], result[i]);
}
}
{ // broadcast
auto* arg = def.add_arg();
arg->set_name("broadcast");
arg->set_i(1);
FillTensor<Context, int32_t, int32_t>(
&ws, "X", {M, N}, {1, 100, 5, -10, 3, 6, -1000, 33});
FillTensor<Context, int32_t, int32_t>(&ws, "Y", {N}, {1, 6, -1000, -10});
std::unique_ptr<caffe2::OperatorBase> op(caffe2::CreateOperator(def, &ws));
EXPECT_NE(nullptr, op.get());
EXPECT_TRUE(op->Run());
auto* blob = ws.GetBlob("Z");
EXPECT_NE(nullptr, blob);
caffe2::Tensor Z(blob->Get<caffe2::Tensor>(), caffe2::CPU);
EXPECT_EQ(Z.numel(), M * N);
std::vector<bool> result{
true, false, false, true, false, true, true, false};
for (const auto i : c10::irange(Z.numel())) {
EXPECT_EQ(Z.template data<bool>()[i], result[i]);
}
}
}
#endif // CAFFE2_OPERATORS_ELEMENTWISE_OP_TEST_H_
|