File: elementwise_ops.cu

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (262 lines) | stat: -rw-r--r-- 7,687 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
#include "caffe2/operators/elementwise_ops.h"

#include "caffe2/utils/cub_namespace.cuh"
#include <cub/block/block_load.cuh>
#include <cub/block/block_reduce.cuh>
#include <cub/device/device_reduce.cuh>

#include "caffe2/core/common_gpu.h"
#include "caffe2/core/context_gpu.h"
#include "caffe2/utils/conversions.h"

#ifdef __HIPCC__
#if TORCH_HIP_VERSION < 210
// rocblas doesn't fully support fp16 yet
#define ROCBLAS_FP16 0
#endif
#endif

namespace caffe2 {

REGISTER_CUDA_OPERATOR(
    Not,
    UnaryElementwiseOp<BoolTypes, CUDAContext, NotFunctor<CUDAContext>>);
REGISTER_CUDA_OPERATOR(
    Sign,
    UnaryElementwiseOp<NumericTypes, CUDAContext, SignFunctor<CUDAContext>>);

#define REGISTER_CUDA_COMPARE_OPERATOR(Op)                    \
  REGISTER_CUDA_OPERATOR(                                     \
      Op,                                                     \
      BinaryElementwiseOp<                                    \
          TensorTypes<bool, int32_t, int64_t, float, double>, \
          CUDAContext,                                        \
          Op##Functor<CUDAContext>,                           \
          FixedType<bool>>)

REGISTER_CUDA_COMPARE_OPERATOR(EQ);
REGISTER_CUDA_COMPARE_OPERATOR(NE);
REGISTER_CUDA_COMPARE_OPERATOR(LT);
REGISTER_CUDA_COMPARE_OPERATOR(LE);
REGISTER_CUDA_COMPARE_OPERATOR(GT);
REGISTER_CUDA_COMPARE_OPERATOR(GE);

#undef REGISTER_CUDA_COMPARE_OPERATOR

#define REGISTER_CUDA_LOGICAL_BINARY_OPERATOR(Op) \
  REGISTER_CUDA_OPERATOR(                         \
      Op,                                         \
      BinaryElementwiseOp<BoolTypes, CUDAContext, Op##Functor<CUDAContext>>)

REGISTER_CUDA_LOGICAL_BINARY_OPERATOR(And);
REGISTER_CUDA_LOGICAL_BINARY_OPERATOR(Or);
REGISTER_CUDA_LOGICAL_BINARY_OPERATOR(Xor);

#undef REGISTER_CUDA_LOGICAL_BINARY_OPERATOR

#define REGISTER_CUDA_BITWISE_BINARY_OPERATOR(Op) \
  REGISTER_CUDA_OPERATOR(                         \
      Op,                                         \
      BinaryElementwiseOp<                        \
          IntBoolTypes,                           \
          CUDAContext,                            \
          Op##Functor<CUDAContext>>)

REGISTER_CUDA_BITWISE_BINARY_OPERATOR(BitwiseAnd);
REGISTER_CUDA_BITWISE_BINARY_OPERATOR(BitwiseOr);
REGISTER_CUDA_BITWISE_BINARY_OPERATOR(BitwiseXor);

#undef REGISTER_CUDA_BITWISE_BINARY_OPERATOR

namespace {

template <typename T>
__global__ void
reduce_sum_like_post1(const T* g_idata, T* g_odata, int pre, int N) {
  int n = blockIdx.x * blockDim.x + threadIdx.x;
  if (n >= N) {
    return;
  }

  float sum = 0.0;
  for (int i = 0; i < pre; ++i) {
    sum += convert::To<T, float>(g_idata[i * N + n]);
  }

  g_odata[n] = convert::To<float, T>(sum);
}

template <typename T>
void device_reduce(
    const T* d_in,
    T* d_out,
    int N,
    Tensor* buffer,
    CUDAContext* context) {
  // Determine temporary device storage requirements
  size_t temp_storage_bytes = 0;
  cub::DeviceReduce::Sum(
      NULL, temp_storage_bytes, d_in, d_out, N, context->cuda_stream());

  auto buffer_size = temp_storage_bytes / sizeof(T);
  buffer_size += temp_storage_bytes % sizeof(T) != 0 ? 1 : 0;
  buffer->Resize(buffer_size);
  void* d_temp_storage = static_cast<void*>(buffer->template mutable_data<T>());
  // Run sum-reduction
  cub::DeviceReduce::Sum(
      d_temp_storage,
      temp_storage_bytes,
      d_in,
      d_out,
      N,
      context->cuda_stream());
}

template <>
void device_reduce<at::Half>(
    const at::Half* in,
    at::Half* out,
    int N,
    Tensor* buffer,
    CUDAContext* context) {
  (void)N; // Suppress unused variable warning
  (void)buffer; // Suppress unused variable warning
  (void)context; // Suppress unused variable warning
#if TORCH_HIP_VERSION >= 210
  auto buffer_size = 1;

  if (buffer->numel() != buffer_size) {
    buffer->Resize(buffer_size);

    math::Set<at::Half, CUDAContext>(
        N,
        convert::To<float, at::Half>(1.),
        buffer->template mutable_data<at::Half>(),
        context);
  }

  CUBLAS_ENFORCE(rocblas_hdot(
      context->cublas_handle(),
      N,
      reinterpret_cast<const rocblas_half*>(in),
      1,
      reinterpret_cast<const rocblas_half*>(buffer->data<at::Half>()),
      0,
      reinterpret_cast<rocblas_half*>(out)));
#elif TORCH_HIP_VERSION < 210
   CAFFE_THROW("HIP rocblas doesn't fully support fp16 device_reduce yet.");
#else
  auto buffer_size = 1;

  if (buffer->numel() != buffer_size) {
    buffer->Resize(buffer_size);

    math::Set<at::Half, CUDAContext>(
        N,
        convert::To<float, at::Half>(1.),
        buffer->template mutable_data<at::Half>(),
        context);
  }

  CUBLAS_ENFORCE(cublasDotEx(
      context->cublas_handle(),
      N,
      in,
      CUDA_R_16F,
      1,
      buffer->data<at::Half>(),
      CUDA_R_16F,
      0,
      out,
      CUDA_R_16F,
      CUDA_R_32F));
#endif
}

template <typename T, int BLOCK_THREADS>
__global__ void
reduce_sum_like(const T* g_idata, T* g_odata, int pre, int N, int post) {
  int n = blockIdx.x;
  float sum = 0.0;
  int limit = pre * post;
  for (int i = threadIdx.x; i < limit; i += blockDim.x) {
    int curPre = i / post;
    int curPost = i % post;

    sum +=
        convert::To<T, float>(g_idata[curPre * N * post + n * post + curPost]);
  }
  // uses a shared memory reduction within block
  typedef cub::BlockReduce<float, BLOCK_THREADS> BlockReduceT;
  // Shared memory
  __shared__ typename BlockReduceT::TempStorage temp_storage;
  float aggregate = BlockReduceT(temp_storage).Sum(sum);
  if (threadIdx.x == 0) {
    g_odata[n] = convert::To<float, T>(aggregate);
  }
}
} // namespace

template <>
template <typename T>
bool SumReduceLikeOp<CUDAContext>::DoRunWithType() {
  const auto& A = Input(0);
  const auto& B = Input(1);
  auto* C = Output(0);
  auto count = A.size();
  CAFFE_ENFORCE(&B != C, "In-place is not allowed.");
  C->ResizeLike(B);
  const T* Adata = A.template data<T>();
  auto* Cdata = C->template mutable_data<T>();

  if (C->size() == 0) {
    // output is empty, nothing to do, not even launching the CUDA kernel
    return true;
  }

  if (B.size() == 1) {
    device_reduce<T>(Adata, Cdata, count, &sum_buffer_, &context_);
  } else {
    size_t pre, n, post;
    std::tie(pre, n, post) =
        elementwise_ops_utils::ComputeLegacyBroadcastSizes(A, B, axis_);
    // because we check shape(B) \in shape(A) before,
    // post and pre cannot be 1 at same time
    if (post == 1) {
      reduce_sum_like_post1<T>
          <<<CAFFE_GET_BLOCKS(n),
             CAFFE_CUDA_NUM_THREADS,
             0,
             context_.cuda_stream()>>>(Adata, Cdata, pre, n);
      C10_CUDA_KERNEL_LAUNCH_CHECK();
    } else {
      if (post >= 128) {
        reduce_sum_like<T, 512>
            <<<n, 512, 0, context_.cuda_stream()>>>(Adata, Cdata, pre, n, post);
        C10_CUDA_KERNEL_LAUNCH_CHECK();
      } else if (post >= 64) {
        reduce_sum_like<T, 128>
            <<<n, 128, 0, context_.cuda_stream()>>>(Adata, Cdata, pre, n, post);
        C10_CUDA_KERNEL_LAUNCH_CHECK();
      } else if (post >= 32) {
        reduce_sum_like<T, 64>
            <<<n, 64, 0, context_.cuda_stream()>>>(Adata, Cdata, pre, n, post);
        C10_CUDA_KERNEL_LAUNCH_CHECK();
      } else {
        reduce_sum_like<T, 32>
            <<<n, 32, 0, context_.cuda_stream()>>>(Adata, Cdata, pre, n, post);
        C10_CUDA_KERNEL_LAUNCH_CHECK();
      }
    }
  }
  return true;
}

template <>
bool SumReduceLikeOp<CUDAContext>::RunOnDevice() {
  return DispatchHelper<TensorTypes<float, at::Half>>::call(this, Input(0));
}

REGISTER_CUDA_OPERATOR(SumReduceLike, SumReduceLikeOp<CUDAContext>);

} // namespace caffe2