1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
|
#include "caffe2/operators/elementwise_ops.h"
#include "caffe2/utils/cub_namespace.cuh"
#include <cub/block/block_load.cuh>
#include <cub/block/block_reduce.cuh>
#include <cub/device/device_reduce.cuh>
#include "caffe2/core/common_gpu.h"
#include "caffe2/core/context_gpu.h"
#include "caffe2/utils/conversions.h"
#ifdef __HIPCC__
#if TORCH_HIP_VERSION < 210
// rocblas doesn't fully support fp16 yet
#define ROCBLAS_FP16 0
#endif
#endif
namespace caffe2 {
REGISTER_CUDA_OPERATOR(
Not,
UnaryElementwiseOp<BoolTypes, CUDAContext, NotFunctor<CUDAContext>>);
REGISTER_CUDA_OPERATOR(
Sign,
UnaryElementwiseOp<NumericTypes, CUDAContext, SignFunctor<CUDAContext>>);
#define REGISTER_CUDA_COMPARE_OPERATOR(Op) \
REGISTER_CUDA_OPERATOR( \
Op, \
BinaryElementwiseOp< \
TensorTypes<bool, int32_t, int64_t, float, double>, \
CUDAContext, \
Op##Functor<CUDAContext>, \
FixedType<bool>>)
REGISTER_CUDA_COMPARE_OPERATOR(EQ);
REGISTER_CUDA_COMPARE_OPERATOR(NE);
REGISTER_CUDA_COMPARE_OPERATOR(LT);
REGISTER_CUDA_COMPARE_OPERATOR(LE);
REGISTER_CUDA_COMPARE_OPERATOR(GT);
REGISTER_CUDA_COMPARE_OPERATOR(GE);
#undef REGISTER_CUDA_COMPARE_OPERATOR
#define REGISTER_CUDA_LOGICAL_BINARY_OPERATOR(Op) \
REGISTER_CUDA_OPERATOR( \
Op, \
BinaryElementwiseOp<BoolTypes, CUDAContext, Op##Functor<CUDAContext>>)
REGISTER_CUDA_LOGICAL_BINARY_OPERATOR(And);
REGISTER_CUDA_LOGICAL_BINARY_OPERATOR(Or);
REGISTER_CUDA_LOGICAL_BINARY_OPERATOR(Xor);
#undef REGISTER_CUDA_LOGICAL_BINARY_OPERATOR
#define REGISTER_CUDA_BITWISE_BINARY_OPERATOR(Op) \
REGISTER_CUDA_OPERATOR( \
Op, \
BinaryElementwiseOp< \
IntBoolTypes, \
CUDAContext, \
Op##Functor<CUDAContext>>)
REGISTER_CUDA_BITWISE_BINARY_OPERATOR(BitwiseAnd);
REGISTER_CUDA_BITWISE_BINARY_OPERATOR(BitwiseOr);
REGISTER_CUDA_BITWISE_BINARY_OPERATOR(BitwiseXor);
#undef REGISTER_CUDA_BITWISE_BINARY_OPERATOR
namespace {
template <typename T>
__global__ void
reduce_sum_like_post1(const T* g_idata, T* g_odata, int pre, int N) {
int n = blockIdx.x * blockDim.x + threadIdx.x;
if (n >= N) {
return;
}
float sum = 0.0;
for (int i = 0; i < pre; ++i) {
sum += convert::To<T, float>(g_idata[i * N + n]);
}
g_odata[n] = convert::To<float, T>(sum);
}
template <typename T>
void device_reduce(
const T* d_in,
T* d_out,
int N,
Tensor* buffer,
CUDAContext* context) {
// Determine temporary device storage requirements
size_t temp_storage_bytes = 0;
cub::DeviceReduce::Sum(
NULL, temp_storage_bytes, d_in, d_out, N, context->cuda_stream());
auto buffer_size = temp_storage_bytes / sizeof(T);
buffer_size += temp_storage_bytes % sizeof(T) != 0 ? 1 : 0;
buffer->Resize(buffer_size);
void* d_temp_storage = static_cast<void*>(buffer->template mutable_data<T>());
// Run sum-reduction
cub::DeviceReduce::Sum(
d_temp_storage,
temp_storage_bytes,
d_in,
d_out,
N,
context->cuda_stream());
}
template <>
void device_reduce<at::Half>(
const at::Half* in,
at::Half* out,
int N,
Tensor* buffer,
CUDAContext* context) {
(void)N; // Suppress unused variable warning
(void)buffer; // Suppress unused variable warning
(void)context; // Suppress unused variable warning
#if TORCH_HIP_VERSION >= 210
auto buffer_size = 1;
if (buffer->numel() != buffer_size) {
buffer->Resize(buffer_size);
math::Set<at::Half, CUDAContext>(
N,
convert::To<float, at::Half>(1.),
buffer->template mutable_data<at::Half>(),
context);
}
CUBLAS_ENFORCE(rocblas_hdot(
context->cublas_handle(),
N,
reinterpret_cast<const rocblas_half*>(in),
1,
reinterpret_cast<const rocblas_half*>(buffer->data<at::Half>()),
0,
reinterpret_cast<rocblas_half*>(out)));
#elif TORCH_HIP_VERSION < 210
CAFFE_THROW("HIP rocblas doesn't fully support fp16 device_reduce yet.");
#else
auto buffer_size = 1;
if (buffer->numel() != buffer_size) {
buffer->Resize(buffer_size);
math::Set<at::Half, CUDAContext>(
N,
convert::To<float, at::Half>(1.),
buffer->template mutable_data<at::Half>(),
context);
}
CUBLAS_ENFORCE(cublasDotEx(
context->cublas_handle(),
N,
in,
CUDA_R_16F,
1,
buffer->data<at::Half>(),
CUDA_R_16F,
0,
out,
CUDA_R_16F,
CUDA_R_32F));
#endif
}
template <typename T, int BLOCK_THREADS>
__global__ void
reduce_sum_like(const T* g_idata, T* g_odata, int pre, int N, int post) {
int n = blockIdx.x;
float sum = 0.0;
int limit = pre * post;
for (int i = threadIdx.x; i < limit; i += blockDim.x) {
int curPre = i / post;
int curPost = i % post;
sum +=
convert::To<T, float>(g_idata[curPre * N * post + n * post + curPost]);
}
// uses a shared memory reduction within block
typedef cub::BlockReduce<float, BLOCK_THREADS> BlockReduceT;
// Shared memory
__shared__ typename BlockReduceT::TempStorage temp_storage;
float aggregate = BlockReduceT(temp_storage).Sum(sum);
if (threadIdx.x == 0) {
g_odata[n] = convert::To<float, T>(aggregate);
}
}
} // namespace
template <>
template <typename T>
bool SumReduceLikeOp<CUDAContext>::DoRunWithType() {
const auto& A = Input(0);
const auto& B = Input(1);
auto* C = Output(0);
auto count = A.size();
CAFFE_ENFORCE(&B != C, "In-place is not allowed.");
C->ResizeLike(B);
const T* Adata = A.template data<T>();
auto* Cdata = C->template mutable_data<T>();
if (C->size() == 0) {
// output is empty, nothing to do, not even launching the CUDA kernel
return true;
}
if (B.size() == 1) {
device_reduce<T>(Adata, Cdata, count, &sum_buffer_, &context_);
} else {
size_t pre, n, post;
std::tie(pre, n, post) =
elementwise_ops_utils::ComputeLegacyBroadcastSizes(A, B, axis_);
// because we check shape(B) \in shape(A) before,
// post and pre cannot be 1 at same time
if (post == 1) {
reduce_sum_like_post1<T>
<<<CAFFE_GET_BLOCKS(n),
CAFFE_CUDA_NUM_THREADS,
0,
context_.cuda_stream()>>>(Adata, Cdata, pre, n);
C10_CUDA_KERNEL_LAUNCH_CHECK();
} else {
if (post >= 128) {
reduce_sum_like<T, 512>
<<<n, 512, 0, context_.cuda_stream()>>>(Adata, Cdata, pre, n, post);
C10_CUDA_KERNEL_LAUNCH_CHECK();
} else if (post >= 64) {
reduce_sum_like<T, 128>
<<<n, 128, 0, context_.cuda_stream()>>>(Adata, Cdata, pre, n, post);
C10_CUDA_KERNEL_LAUNCH_CHECK();
} else if (post >= 32) {
reduce_sum_like<T, 64>
<<<n, 64, 0, context_.cuda_stream()>>>(Adata, Cdata, pre, n, post);
C10_CUDA_KERNEL_LAUNCH_CHECK();
} else {
reduce_sum_like<T, 32>
<<<n, 32, 0, context_.cuda_stream()>>>(Adata, Cdata, pre, n, post);
C10_CUDA_KERNEL_LAUNCH_CHECK();
}
}
}
return true;
}
template <>
bool SumReduceLikeOp<CUDAContext>::RunOnDevice() {
return DispatchHelper<TensorTypes<float, at::Half>>::call(this, Input(0));
}
REGISTER_CUDA_OPERATOR(SumReduceLike, SumReduceLikeOp<CUDAContext>);
} // namespace caffe2
|