1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
|
#include "caffe2/operators/elementwise_ops_utils.h"
namespace caffe2 {
namespace elementwise_ops_utils {
std::tuple<size_t, size_t, size_t>
ComputeLegacyBroadcastSizes(const Tensor& A, const Tensor& B, int axis) {
CAFFE_ENFORCE_GE(
A.dim(),
B.dim(),
"If you are doing broadcasting, input1 should have "
"a smaller or equal number of dimensions.");
if (axis == -1) {
axis = A.dim() - B.dim();
}
CAFFE_ENFORCE(
axis >= 0 && axis <= A.dim() - B.dim(),
"Broadcast axis should be in the range of"
"[0, A.ndim() - B.ndim()], but axis = ",
axis);
int b_dim_start = 0;
while (b_dim_start < B.dim() && B.size(b_dim_start) == 1) {
++b_dim_start;
}
int b_dim_end = B.dim() - 1;
while (b_dim_end >= b_dim_start && B.size(b_dim_end) == 1) {
--b_dim_end;
}
size_t pre = 1, n = 1, post = 1;
for (int i = 0; i < axis + b_dim_start; ++i) {
pre *= A.size(i);
}
for (int i = b_dim_start; i <= b_dim_end; ++i) {
CAFFE_ENFORCE_EQ(
A.size(i + axis), B.size(i), "Broadcast dimension mismatch.");
n *= B.size(i);
}
for (int i = axis + b_dim_end + 1; i < A.dim(); ++i) {
post *= A.size(i);
}
return std::make_tuple(pre, n, post);
}
std::vector<int> ComputeBinaryBroadcastForwardDims(
const c10::ArrayRef<int>& A_dims,
const c10::ArrayRef<int>& B_dims) {
const int ndim = std::max(A_dims.size(), B_dims.size());
std::vector<int> C_dims(ndim);
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
int i = A_dims.size() - 1;
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
int j = B_dims.size() - 1;
int k = ndim - 1;
for (; i >= 0 && j >= 0; --k) {
const int A_dim = A_dims[i];
const int B_dim = B_dims[j];
CAFFE_ENFORCE(
A_dim == B_dim || A_dim == 1 || B_dim == 1,
"A_dim: ",
A_dim,
",B_dim: ",
B_dim);
if (A_dim == 0 || B_dim == 0) {
C_dims[k] = 0;
} else {
C_dims[k] = std::max(A_dims[i], B_dims[j]);
}
--i;
--j;
}
for (; i >= 0; --i) {
C_dims[k--] = A_dims[i];
}
for (; j >= 0; --j) {
C_dims[k--] = B_dims[j];
}
return C_dims;
}
void ComputeBinaryBroadcastBackwardAxes(
const std::vector<int>& A_dims,
const std::vector<int>& B_dims,
std::vector<int>* A_axes,
std::vector<int>* B_axes) {
A_axes->clear();
B_axes->clear();
const int ndim = std::max(A_dims.size(), B_dims.size());
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
int i = A_dims.size() - 1;
// NOLINTNEXTLINE(bugprone-narrowing-conversions,cppcoreguidelines-narrowing-conversions)
int j = B_dims.size() - 1;
int k = ndim - 1;
for (; i >= 0 && j >= 0; --k) {
CAFFE_ENFORCE(A_dims[i] == B_dims[j] || A_dims[i] == 1 || B_dims[j] == 1);
if (A_dims[i] != B_dims[j]) {
if (A_dims[i] == 1) {
A_axes->push_back(k);
}
if (B_dims[j] == 1) {
B_axes->push_back(k);
}
}
--i;
--j;
}
if (i < 0) {
for (; k >= 0; --k) {
A_axes->push_back(k);
}
} else {
for (; k >= 0; --k) {
B_axes->push_back(k);
}
}
std::reverse(A_axes->begin(), A_axes->end());
std::reverse(B_axes->begin(), B_axes->end());
}
void ComputeBinaryBroadcastBackwardDims(
const std::vector<int>& A_dims,
const std::vector<int>& B_dims,
std::vector<int>* A_back_dims,
std::vector<int>* B_back_dims) {
const int ndim = std::max(A_dims.size(), B_dims.size());
A_back_dims->assign(ndim, 1);
B_back_dims->assign(ndim, 1);
std::copy(A_dims.crbegin(), A_dims.crend(), A_back_dims->rbegin());
std::copy(B_dims.crbegin(), B_dims.crend(), B_back_dims->rbegin());
}
} // namespace elementwise_ops_utils
} // namespace caffe2
|