1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
|
#include "caffe2/operators/erf_op.h"
#include <algorithm>
#include <functional>
#include "caffe2/core/context_gpu.h"
namespace caffe2 {
namespace {
__global__ void ErfGradientCUDAKernel(
const int N,
const float* dY,
const float* X,
float* dX) {
CUDA_1D_KERNEL_LOOP(i, N) {
#if __CUDA_ARCH__ >= 350
dX[i] = 2.0f / sqrtf(PI) * expf(-powf(__ldg(X+i), 2.0f)) * __ldg(dY + i);
#else
dX[i] = 2.0f / sqrtf(PI) * expf(-powf(X[i], 2.0f)) * dY[i];
#endif
}
}
} // namespace
template <>
template <typename T>
bool ErfGradientFunctor<CUDAContext>::Forward(
const std::vector<int>& X_dims,
const std::vector<int>& /* dY_dims */,
const T* X,
const T* dY,
T* dX,
CUDAContext* context) const {
const int size = std::accumulate(
X_dims.cbegin(), X_dims.cend(), 1, std::multiplies<int>());
ErfGradientCUDAKernel<<<
CAFFE_GET_BLOCKS(size),
CAFFE_CUDA_NUM_THREADS,
0,
context->cuda_stream()>>>(size, dY, X, dX);
C10_CUDA_KERNEL_LAUNCH_CHECK();
return true;
}
REGISTER_CUDA_OPERATOR(
Erf,
UnaryElementwiseOp<
TensorTypes<float>,
CUDAContext,
ErfFunctor<CUDAContext>>);
REGISTER_CUDA_OPERATOR(
ErfGradient,
BinaryElementwiseOp<
TensorTypes<float>,
CUDAContext,
ErfGradientFunctor<CUDAContext>>);
} // namespace caffe2
|