1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
|
#include "caffe2/operators/fc_inference.h"
#include "caffe2/core/types.h"
namespace caffe2 {
std::vector<TensorShape> FCShapeInference(
const OperatorDef& def,
const vector<TensorShape>& in,
bool pretransposed_weight) {
vector<TensorShape> out(1);
if (in[0].unknown_shape() || in[1].unknown_shape()) {
out[0].set_unknown_shape(true);
return out;
}
ArgumentHelper helper(def);
auto axis = helper.GetSingleArgument<int32_t>("axis", 1);
const auto canonical_axis = canonical_axis_index_(axis, in[0].dims().size());
auto axis_w = helper.GetSingleArgument<int32_t>("axis_w", 1);
const int canonical_axis_w =
canonical_axis_index_(axis_w, in[1].dims().size());
const int64_t N = pretransposed_weight
? size_from_dim_(canonical_axis_w, GetDimsVector(in[1]))
: size_to_dim_(canonical_axis_w, GetDimsVector(in[1]));
vector<int64_t> y_shape(in[0].dims().begin(), in[0].dims().end());
CAFFE_ENFORCE_LE(canonical_axis + 1, y_shape.size());
y_shape.resize(canonical_axis + 1);
y_shape[canonical_axis] = N;
out[0] = CreateTensorShape(y_shape, in[0].data_type());
return out;
}
OpSchema::Cost CostInferenceForFC(
const OperatorDef& def,
const vector<TensorShape>& in,
bool pretransposed_weight) {
CAFFE_ENFORCE_GE(in.size(), 3, "FC requires at least three inputs");
struct OpSchema::Cost c;
ArgumentHelper helper(def);
auto axis = helper.GetSingleArgument<int32_t>("axis", 1);
const auto canonical_axis = canonical_axis_index_(axis, in[0].dims().size());
const uint64_t M = size_to_dim_(canonical_axis, GetDimsVector(in[0]));
const uint64_t K = size_from_dim_(canonical_axis, GetDimsVector(in[0]));
auto axis_w = helper.GetSingleArgument<int32_t>("axis_w", 1);
const int canonical_axis_w =
canonical_axis_index_(axis_w, in[1].dims().size());
const uint64_t N = pretransposed_weight
? size_from_dim_(canonical_axis_w, GetDimsVector(in[1]))
: size_to_dim_(canonical_axis_w, GetDimsVector(in[1]));
auto const& X_element_size_byte =
DataTypeToTypeMeta(in[0].data_type()).itemsize();
c.flops = M * N * (2 * K + 1);
c.bytes_read = (K * (M + N) + N) * X_element_size_byte;
c.bytes_written = M * N * X_element_size_byte;
c.params_bytes = (K * N + N) * X_element_size_byte;
return c;
}
std::vector<TensorShape> FCGradientShapeInference(
const OperatorDef& def,
const vector<TensorShape>& in,
bool pretransposed_weight) {
vector<TensorShape> out(2);
ArgumentHelper helper(def);
auto axis_w = helper.GetSingleArgument<int32_t>("axis_w", 1);
const int canonical_axis_w =
canonical_axis_index_(axis_w, in[1].dims().size());
const int N = pretransposed_weight
? size_from_dim_(canonical_axis_w, GetDimsVector(in[1]))
: size_to_dim_(canonical_axis_w, GetDimsVector(in[1]));
vector<int> dW_shape(in[1].dims().begin(), in[1].dims().end());
out[0] = CreateTensorShape(dW_shape, in[1].data_type());
out[1] = CreateTensorShape(vector<int>{N}, in[1].data_type()); // db
if (def.output_size() == 3) {
vector<int> dX_shape(in[0].dims().begin(), in[0].dims().end());
out.push_back(CreateTensorShape(dX_shape, in[0].data_type()));
}
return out;
}
OpSchema::Cost CostInferenceForFCGradient(
const OperatorDef& def,
const vector<TensorShape>& in,
bool pretransposed_weight) {
struct OpSchema::Cost c;
ArgumentHelper helper(def);
std::vector<TensorShape> out =
FCGradientShapeInference(def, in, pretransposed_weight);
CAFFE_ENFORCE_LT(0, out.size());
const TensorShape dW = out[0];
auto const& dW_element_size_byte =
DataTypeToTypeMeta(dW.data_type()).itemsize();
const TensorShape db = out[1];
auto const& db_element_size_byte =
DataTypeToTypeMeta(db.data_type()).itemsize();
auto axis = helper.GetSingleArgument<int32_t>("axis", 1);
const auto canonical_axis = canonical_axis_index_(axis, in[0].dims().size());
const uint64_t M = size_to_dim_(canonical_axis, GetDimsVector(in[0]));
const uint64_t K = size_from_dim_(canonical_axis, GetDimsVector(in[0]));
auto axis_w = helper.GetSingleArgument<int32_t>("axis_w", 1);
const int canonical_axis_w =
canonical_axis_index_(axis_w, in[1].dims().size());
const uint64_t N = pretransposed_weight
? size_from_dim_(canonical_axis_w, GetDimsVector(in[1]))
: size_to_dim_(canonical_axis_w, GetDimsVector(in[1]));
uint64_t size_dW = nElemFromDim(dW);
uint64_t size_db = nElemFromDim(db);
c.flops = M * N * (2 * K + 1);
c.bytes_written =
size_dW * dW_element_size_byte + size_db * db_element_size_byte;
c.params_bytes = (K * N + N) * sizeof(float);
if (out.size() == 3) {
const TensorShape dX = out[2];
uint64_t size_dX = nElemFromDim(dX);
auto const& dX_element_size_byte =
DataTypeToTypeMeta(dX.data_type()).itemsize();
c.flops += 2 * M * N * K;
c.bytes_written += size_dX * dX_element_size_byte;
}
return c;
}
} // namespace caffe2
|