1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
|
#include "caffe2/operators/fully_connected_op.h"
#include <functional>
#include "caffe2/operators/fc_inference.h"
namespace caffe2 {
REGISTER_CPU_OPERATOR(FC, FullyConnectedOp<CPUContext>);
REGISTER_CPU_GRADIENT_OPERATOR(
FCGradient,
FullyConnectedGradientOp<CPUContext>);
REGISTER_CPU_OPERATOR(
FCTransposed,
FullyConnectedOp<
CPUContext,
DefaultEngine,
false /* don't transpose weight */>);
REGISTER_CPU_GRADIENT_OPERATOR(
FCTransposedGradient,
FullyConnectedGradientOp<
CPUContext,
DefaultEngine,
false /* don't transpose weight */>);
using namespace std::placeholders;
OPERATOR_SCHEMA(FCTransposed)
.NumInputs(3)
.NumOutputs(1)
// NOLINTNEXTLINE(modernize-avoid-bind)
.TensorInferenceFunction(std::bind(FCShapeInference, _1, _2, true))
// NOLINTNEXTLINE(modernize-avoid-bind)
.CostInferenceFunction(std::bind(CostInferenceForFC, _1, _2, true))
.SetDoc(R"DOC(
Same as FC, but weight matrix is supposed to be already pretransposed.
FCTransposed stands for calling blass with no noTrans, noTrans
)DOC")
.InheritOnnxSchema();
OPERATOR_SCHEMA(FC)
.NumInputs(3)
.NumOutputs(1)
// NOLINTNEXTLINE(modernize-avoid-bind)
.TensorInferenceFunction(std::bind(FCShapeInference, _1, _2, false))
// NOLINTNEXTLINE(modernize-avoid-bind)
.CostInferenceFunction(std::bind(CostInferenceForFC, _1, _2, false))
.SetDoc(R"DOC(
The FC operator computes an output $(Y)$ as a linear combination of the input data blob $(X)$ with a weight blob $(W)$ and bias blob $(b)$. More formally,
$$Y = XW^T+b$$
Here, $X$ is a matrix of shape $(M,K)$, $W$ is a matrix of shape $(N,K)$, $b$ is a vector of length $N$, and $Y$ is a matrix of shape $(M,N)$. $N$ can be thought of as the number of nodes in the layer, $M$ is the batch size, and $K$ is the number of features in an input observation.
*NOTE: $X$ does not need to explicitly be a 2-dimensional matrix, however, if it is not it will be coerced into one. For an arbitrary $n$-dimensional tensor $X$, e.g. $[a_0, a_1, \ldots ,a_{k-1}, a_k, \ldots , a_{n-1}]$, where $a_i$ in $N$, and $k$ is the $axis$ arg provided, then $X$ will be coerced into a 2-dimensional tensor with dimensions $[a_0 * \ldots * a_{k-1}, a_k * \ldots * a_{n-1}]$. For the default case where axis=1, this means the $X$ tensor will be coerced into a 2D tensor of dimensions $[a_0, a_1 * \ldots * a_{n-1}]$, where $a_0$ is often the batch size. In this situation, we must have $a_0 = M$ and $a_1 * \ldots * a_{n-1} = K$. Lastly, even though $b$ is a vector of length $N$, it is copied and resized to shape $(M x N)$ implicitly, then added to each vector in the batch.*
Github Links:
- https://github.com/pytorch/pytorch/blob/master/caffe2/operators/fully_connected_op.h
- https://github.com/pytorch/pytorch/blob/master/caffe2/operators/fully_connected_op.cc
<details>
<summary> <b>Example</b> </summary>
**Code**
```
// In this example, our batch size is 1 (M=1), the input observation will have
// 6 features (K=6), and the layer will have one hidden node (N=1). The
// expected output is Y=7.
workspace.ResetWorkspace()
op = core.CreateOperator(
"FC",
["X", "W", "b"],
["Y"]
)
// Create X: MxK
data = np.array([1,2,3,4,5,6]).astype(np.float32)
data = data[np.newaxis,:]
// Create W: NxK
weights = np.array(np.array([1,1/2.,1/3.,1/4.,1/5.,1/6.])).astype(np.float32)
weights = weights[np.newaxis,:]
// Create b: N
bias = np.array([1.]).astype(np.float32)
// Put the inputs into the workspace
workspace.FeedBlob("X", data)
workspace.FeedBlob("W", weights)
workspace.FeedBlob("b", bias)
// Run the operator
workspace.RunOperatorOnce(op)
print("Y:\n", workspace.FetchBlob("Y"))
```
**Result**
```
Y:
[[7.]]
```
</details>
)DOC")
.Arg(
"axis",
"*(type: int; default: 1)* Describes the axis of the input data $X$. Defaults to one because in the common case when the input $X$ has shape $(M,K)$, the first axis encodes the batch size.")
.Arg(
"axis_w",
"*(type: int; default: 1)* Describes the axis of the input weight matrix $W$. Defaults to one because the first axis most likely describes the batch_size.")
.Arg(
"float16_compute",
"*(type: bool; default: False)* Whether to use float-16 compute kernel.")
.Input(
0,
"X",
"Input blob to be coerced into a 2D matrix of shape $(M,K)$, where $M$ is the batch size and $K$ is the number of features in a single observation.")
.Input(
1,
"W",
"Input blob to be coerced into a 2D matrix of shape $(N,K)$ describing a fully connected weight matrix. Here, $K$ is the number of features in a single observation and $N$ is the number of nodes in the FC layer.")
.Input(
2,
"b",
"Input blob containing vector of length $N$ which describes one bias for each node in the layer.")
.Output(
0,
"Y",
"Output blob containing a 2D output matrix of shape $(M,N)$, where $M$ is the batch size and $N$ is the number of nodes in the layer. The output is calculated as $Y=XW^T+b$.")
.InheritOnnxSchema("Gemm");
GRADIENT_OPERATOR_SCHEMA(FCGradient)
.NumInputs(3)
.NumOutputs(2, 3)
// NOLINTNEXTLINE(modernize-avoid-bind)
.TensorInferenceFunction(std::bind(FCGradientShapeInference, _1, _2, false))
.CostInferenceFunction(
// NOLINTNEXTLINE(modernize-avoid-bind)
std::bind(CostInferenceForFCGradient, _1, _2, false));
GRADIENT_OPERATOR_SCHEMA(FCTransposedGradient)
.NumInputs(3)
.NumOutputs(2, 3)
// NOLINTNEXTLINE(modernize-avoid-bind)
.TensorInferenceFunction(std::bind(FCGradientShapeInference, _1, _2, false))
.CostInferenceFunction(
// NOLINTNEXTLINE(modernize-avoid-bind)
std::bind(CostInferenceForFCGradient, _1, _2, false));
namespace {
class GetFCGradient : public GradientMakerBase {
using GradientMakerBase::GradientMakerBase;
std::vector<OperatorDef> GetGradientDefs() override {
CAFFE_ENFORCE_EQ(def_.input_size(), 3);
CAFFE_ENFORCE(def_.type() == "FC" || def_.type() == "FCTransposed");
return SingleGradientDef(
def_.type() + "Gradient",
"",
vector<string>{I(0), I(1), GO(0)},
vector<string>{GI(1), GI(2), GI(0)});
}
};
REGISTER_GRADIENT(FC, GetFCGradient);
REGISTER_GRADIENT(FCTransposed, GetFCGradient);
} // namespace
} // namespace caffe2
|