1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
|
#ifndef CAFFE2_OPERATORS_FUSED_ROWWISE_8BIT_CONVERSION_OPS_H_
#define CAFFE2_OPERATORS_FUSED_ROWWISE_8BIT_CONVERSION_OPS_H_
#include "caffe2/core/context.h"
#include "caffe2/core/export_caffe2_op_to_c10.h"
#include <c10/util/irange.h>
#include "caffe2/core/logging.h"
#include "caffe2/core/operator.h"
#include "caffe2/operators/reducer_functors.h"
#include "caffe2/perfkernels/fused_nbit_rowwise_conversion.h"
#include "caffe2/utils/math.h"
C10_DECLARE_EXPORT_CAFFE2_OP_TO_C10(Fused8BitRowwiseQuantizedToFloat);
namespace caffe2 {
#define IS_LITTLE_ENDIAN \
[] { \
const int32_t kValue = 1; \
return reinterpret_cast<const std::uint8_t*>(&kValue)[0] == 1; \
}()
template <
typename T,
typename Tsb, // Type for Scale and Bias
void (*convert)(float* dst, const T* src, size_t N),
bool HAS_CONVERT,
class Context>
class FloatToFused8BitRowwiseQuantizedOp : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
USE_SIMPLE_CTOR_DTOR(FloatToFused8BitRowwiseQuantizedOp)
bool RunOnDevice() override {
CAFFE_ENFORCE(IS_LITTLE_ENDIAN, "Unsupported endianness");
const auto& input = Input(DATA_FLOAT);
CAFFE_ENFORCE_GT(input.dim(), 0, "Input's dimension must be at least 1");
const auto input_rows = input.size_to_dim(input.dim() - 1);
const auto input_columns = input.size(input.dim() - 1);
// The "fused" representation stores the scale and bias with the row-wise
// quantized data in one tensor. Since we quantize with 8 bits (1 byte) and
// represent the scale and bias with 32-bit floats, we'll use the last 8
// bytes of each row for scale (4 bytes) and bias (4 bytes).
// | ... int8 data ... | scale | bias |
// | number_of_columns | sizeof(Tsb)| sizeof(Tsb)|
auto output_dimensions = input.sizes().vec();
output_dimensions[input.dim() - 1] =
input_columns + 2 * static_cast<std::int64_t>(sizeof(Tsb));
auto* output = Output(
DATA_FUSED_SCALE_BIAS_INT8,
output_dimensions,
at::dtype<std::uint8_t>());
const auto* input_data = input.template data<T>();
auto* output_data = output->template mutable_data<std::uint8_t>();
const auto output_columns = output->size(output->dim() - 1);
bool is_float = std::is_same<T, float>::value;
bool out_sb_half = std::is_same<Tsb, at::Half>::value;
if (!HAS_CONVERT) {
CAFFE_ENFORCE(is_float, "convert can be nullptr only if T is float");
if (out_sb_half) {
FloatToFusedNBitRowwiseQuantizedSBHalf(
8,
reinterpret_cast<const float*>(input_data),
input_rows,
input_columns,
output_data);
} else {
FloatToFused8BitRowwiseQuantized(
reinterpret_cast<const float*>(input_data),
input_rows,
input_columns,
output_data);
}
} else {
bool is_half = std::is_same<T, at::Half>::value;
CAFFE_ENFORCE(is_half);
vector<float> tmp(input_columns);
// NOLINTNEXTLINE(clang-diagnostic-sign-compare)
for (const auto row : c10::irange(input_rows)) {
convert(tmp.data(), input_data + row * input_columns, input_columns);
if (out_sb_half) {
FloatToFusedNBitRowwiseQuantizedSBHalf(
8,
tmp.data(),
1,
input_columns,
output_data + row * output_columns);
} else {
FloatToFused8BitRowwiseQuantized(
tmp.data(), 1, input_columns, output_data + row * output_columns);
}
}
}
return true;
}
private:
INPUT_TAGS(DATA_FLOAT);
OUTPUT_TAGS(DATA_FUSED_SCALE_BIAS_INT8);
};
template <
typename T,
typename Tsb,
void (*convert)(T* dst, const float* src, size_t N),
bool HAS_CONVERT,
class Context>
class Fused8BitRowwiseQuantizedToFloatOp : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
USE_SIMPLE_CTOR_DTOR(Fused8BitRowwiseQuantizedToFloatOp)
bool RunOnDevice() override {
CAFFE_ENFORCE(IS_LITTLE_ENDIAN, "Unsupported endianness");
const auto& input = Input(DATA_FUSED_SCALE_BIAS_INT8);
CAFFE_ENFORCE_GT(input.dim(), 0, "Input's dimension must be at least 1");
const auto input_rows = input.size_to_dim(input.dim() - 1);
const auto input_columns = input.size(input.dim() - 1);
// The last 2*sizeof(Tsb) bytes per row are the scale and the bias.
// The rest of input_columns is the number of values in the original row.
auto output_dimensions = input.sizes().vec();
output_dimensions[input.dim() - 1] =
input_columns - 2 * static_cast<std::int64_t>(sizeof(Tsb));
auto* output = Output(DATA_FLOAT, output_dimensions, at::dtype<T>());
const auto output_columns = output->size(output->dim() - 1);
const auto* input_data = input.template data<std::uint8_t>();
T* output_data = output->template mutable_data<T>();
bool is_float = std::is_same<T, float>::value;
bool in_sb_half = std::is_same<Tsb, at::Half>::value;
if (!HAS_CONVERT) {
CAFFE_ENFORCE(is_float, "convert can be nullptr only if T is float");
if (in_sb_half) {
FusedNBitRowwiseQuantizedSBHalfToFloat(
8,
input_data,
input_rows,
input_columns,
reinterpret_cast<float*>(output_data));
} else {
Fused8BitRowwiseQuantizedToFloat(
input_data,
input_rows,
input_columns,
reinterpret_cast<float*>(output_data));
}
} else {
bool is_half = std::is_same<T, at::Half>::value;
CAFFE_ENFORCE(is_half);
vector<float> tmp(input_columns);
// NOLINTNEXTLINE(clang-diagnostic-sign-compare)
for (const auto row : c10::irange(input_rows)) {
if (in_sb_half) {
FusedNBitRowwiseQuantizedSBHalfToFloat(
8,
input_data + row * input_columns,
1,
input_columns,
tmp.data());
} else {
Fused8BitRowwiseQuantizedToFloat(
input_data + row * input_columns, 1, input_columns, tmp.data());
}
convert(output_data + row * output_columns, tmp.data(), output_columns);
}
}
return true;
}
private:
INPUT_TAGS(DATA_FUSED_SCALE_BIAS_INT8);
OUTPUT_TAGS(DATA_FLOAT);
};
#undef IS_LITTLE_ENDIAN
} // namespace caffe2
#endif // CAFFE2_OPERATORS_FUSED_ROWWISE_8BIT_CONVERSION_OPS_H_
|