1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
|
#include "caffe2/operators/fused_rowwise_nbit_conversion_ops.h"
#include "c10/util/Registry.h"
namespace caffe2 {
using std::uint16_t;
using std::vector;
namespace internal {
void convertfp32fp16(at::Half* dst, const float* src, size_t N) {
for (size_t i = 0; i < N; i++) {
dst[i] = src[i];
}
}
} // namespace internal
REGISTER_CPU_OPERATOR(
FloatToFused4BitRowwiseQuantized,
FloatToFusedNBitRowwiseQuantizedOp<4, float, internal::convertfp32fp32>);
OPERATOR_SCHEMA(FloatToFused4BitRowwiseQuantized)
.NumInputs(1)
.NumOutputs(1)
.TensorInferenceFunction([](const OperatorDef& /* def */,
const vector<TensorShape>& in) {
vector<TensorShape> out;
TensorShape X = in[0];
// divide over 2 and round up, add 4 for the extra scale and bias
X.set_dims(
X.dims().size() - 1,
(X.dims(X.dims().size() - 1) + 1) / 2 + 2 * sizeof(at::Half));
out.push_back(std::move(X));
out[0].set_data_type(TensorProto_DataType_UINT8);
return out;
})
.SetDoc(R"DOC(
Applies 4-bit row-wise quantization by determining the range
(maximum - minimum) and offset (minimum value) of each row in the input
matrix, and then scaling each element to an 4-bit number between 0 and
15. To later de-quantize values, the scale (range / 15) and zero_point
are stored alongside the data. More precisely, each row first has quantized
values, and then 2-byte fp16 scale and 2-byte zero_offset.)
)DOC")
.Input(0, "input", "Float32 input data")
.Output(0, "output", "Fused scale, bias and quantized data");
NO_GRADIENT(FloatToFused4BitRowwiseQuantized);
REGISTER_CPU_OPERATOR(
HalfToFused4BitRowwiseQuantized,
FloatToFusedNBitRowwiseQuantizedOp<4, at::Half, internal::convertfp16fp32>);
OPERATOR_SCHEMA(HalfToFused4BitRowwiseQuantized)
.NumInputs(1)
.NumOutputs(1)
.TensorInferenceFunction([](const OperatorDef& /* def */,
const vector<TensorShape>& in) {
vector<TensorShape> out;
TensorShape X = in[0];
X.set_dims(
X.dims().size() - 1,
(X.dims(X.dims().size() - 1) + 1) / 2 + 2 * sizeof(at::Half));
out.push_back(std::move(X));
out[0].set_data_type(TensorProto_DataType_UINT8);
return out;
})
.SetDoc(R"DOC(
Applies 4-bit row-wise quantization by determining the range
(maximum - minimum) and offset (minimum value) of each row in the input
matrix, and then scaling each element to an 4-bit number between 0 and
15. To later de-quantize values, the scale (range / 15) and zero_point
are stored alongside the data. More precisely, each row first has quantized
values, and then 2-byte fp16 scale and 2-byte zero_offset.)
)DOC")
.Input(0, "input", "Float16 input data")
.Output(0, "output", "Fused scale, bias and quantized data");
NO_GRADIENT(HalfToFused4BitRowwiseQuantized);
REGISTER_CPU_OPERATOR(
Fused4BitRowwiseQuantizedToFloat,
FusedNBitRowwiseQuantizedToFloatOp<4, float, internal::convertfp32fp32>);
OPERATOR_SCHEMA(Fused4BitRowwiseQuantizedToFloat)
.NumInputs(1)
.NumOutputs(1)
.TensorInferenceFunction([](const OperatorDef& /* def */,
const vector<TensorShape>& in) {
vector<TensorShape> out;
TensorShape X = in[0];
X.set_dims(
X.dims().size() - 1,
(X.dims(X.dims().size() - 1) - 2 * sizeof(at::Half)) * 2);
out.push_back(std::move(X));
out[0].set_data_type(TensorProto_DataType_FLOAT);
return out;
})
.SetDoc(R"DOC(
De-quantizes the result of the
FloatToFused4BitRowwiseQuantized operator. The input is expected to first have
quantized values, then 2-byte fp16 scale and 1-byte zero_offset. The output is a
matrix containing only the values, but de-quantized. De-quantization is
performed by multiplying each value by its row's scale and zero_point
parameters. The de-quantized values will thus not be exactly equal to
the original, un-quantized floating point values.
)DOC")
.Input(
0,
"scale_bias_quantized_input",
"Fused scale, bias and quantized data")
.Output(0, "float_output", "Float32 data");
NO_GRADIENT(Fused4BitRowwiseQuantizedToFloat);
REGISTER_CPU_OPERATOR(
Fused4BitRowwiseQuantizedToHalf,
FusedNBitRowwiseQuantizedToFloatOp<4, at::Half, internal::convertfp32fp16>);
OPERATOR_SCHEMA(Fused4BitRowwiseQuantizedToHalf)
.NumInputs(1)
.NumOutputs(1)
.TensorInferenceFunction([](const OperatorDef& /* def */,
const vector<TensorShape>& in) {
vector<TensorShape> out;
TensorShape X = in[0];
X.set_dims(
X.dims().size() - 1,
(X.dims(X.dims().size() - 1) - 2 * sizeof(at::Half)) * 2);
out.push_back(std::move(X));
out[0].set_data_type(TensorProto_DataType_FLOAT16);
return out;
})
.SetDoc(R"DOC(
De-quantizes the result of the
FloatToFused4BitRowwiseQuantized operator. The input is expected to first have
quantized values, then 2-byte fp16 scale and 1-byte zero_offset. The output is a
matrix containing only the values, but de-quantized. De-quantization is
performed by multiplying each value by its row's scale and zero_point
parameters. The de-quantized values will thus not be exactly equal to
the original, un-quantized floating point values.
)DOC")
.Input(
0,
"scale_bias_quantized_input",
"Fused scale, bias and quantized data")
.Output(0, "float16_output", "Float16 data");
NO_GRADIENT(Fused4BitRowwiseQuantizedToHalf);
REGISTER_CPU_OPERATOR_WITH_ENGINE(
FloatToFused4BitRowwiseQuantized,
GREEDY,
FloatToFusedNBitRowwiseQuantizedOp<
4,
float,
internal::convertfp32fp32,
true /*GREEDY*/>);
REGISTER_CPU_OPERATOR_WITH_ENGINE(
HalfToFused4BitRowwiseQuantized,
GREEDY,
FloatToFusedNBitRowwiseQuantizedOp<
4,
at::Half,
internal::convertfp16fp32,
true /*GREEDY*/>);
REGISTER_CPU_OPERATOR(
FloatToFused2BitRowwiseQuantized,
FloatToFusedNBitRowwiseQuantizedOp<2, float, internal::convertfp32fp32>);
OPERATOR_SCHEMA(FloatToFused2BitRowwiseQuantized)
.NumInputs(1)
.NumOutputs(1)
.TensorInferenceFunction([](const OperatorDef& /* def */,
const vector<TensorShape>& in) {
vector<TensorShape> out;
TensorShape X = in[0];
// divide over 4 and round up, add 4 for the extra scale and bias
X.set_dims(
X.dims().size() - 1,
(X.dims(X.dims().size() - 1) + 3) / 4 + 2 * sizeof(at::Half));
out.push_back(std::move(X));
out[0].set_data_type(TensorProto_DataType_UINT8);
return out;
})
.SetDoc(R"DOC(
Applies 2-bit row-wise quantization by determining the range
(maximum - minimum) and offset (minimum value) of each row in the input
matrix, and then scaling each element to an 2-bit number between 0 and
3. To later de-quantize values, the scale (range / 3) and zero_point
are stored alongside the data. More precisely, each row first has quantized
values, and then 2-byte fp16 scale and 2-byte zero_offset.)
)DOC")
.Input(0, "input", "Float32 input data")
.Output(0, "output", "Fused scale, bias and quantized data");
NO_GRADIENT(FloatToFused2BitRowwiseQuantized);
REGISTER_CPU_OPERATOR(
HalfToFused2BitRowwiseQuantized,
FloatToFusedNBitRowwiseQuantizedOp<2, at::Half, internal::convertfp16fp32>);
OPERATOR_SCHEMA(HalfToFused2BitRowwiseQuantized)
.NumInputs(1)
.NumOutputs(1)
.TensorInferenceFunction([](const OperatorDef& /* def */,
const vector<TensorShape>& in) {
vector<TensorShape> out;
TensorShape X = in[0];
X.set_dims(
X.dims().size() - 1,
(X.dims(X.dims().size() - 1) + 3) / 4 + 2 * sizeof(at::Half));
out.push_back(std::move(X));
out[0].set_data_type(TensorProto_DataType_UINT8);
return out;
})
.SetDoc(R"DOC(
Applies 2-bit row-wise quantization by determining the range
(maximum - minimum) and offset (minimum value) of each row in the input
matrix, and then scaling each element to an 2-bit number between 0 and
3. To later de-quantize values, the scale (range / 3) and zero_point
are stored alongside the data. More precisely, each row first has quantized
values, and then 2-byte fp16 scale and 2-byte zero_offset.)
)DOC")
.Input(0, "input", "Float16 input data")
.Output(0, "output", "Fused scale, bias and quantized data");
NO_GRADIENT(HalfToFused2BitRowwiseQuantized);
REGISTER_CPU_OPERATOR(
Fused2BitRowwiseQuantizedToFloat,
FusedNBitRowwiseQuantizedToFloatOp<2, float, internal::convertfp32fp32>);
OPERATOR_SCHEMA(Fused2BitRowwiseQuantizedToFloat)
.NumInputs(1)
.NumOutputs(1)
.TensorInferenceFunction([](const OperatorDef& /* def */,
const vector<TensorShape>& in) {
vector<TensorShape> out;
TensorShape X = in[0];
X.set_dims(
X.dims().size() - 1,
(X.dims(X.dims().size() - 1) - 2 * sizeof(at::Half)) * 4);
out.push_back(std::move(X));
out[0].set_data_type(TensorProto_DataType_FLOAT);
return out;
})
.SetDoc(R"DOC(
De-quantizes the result of the
FloatToFused2BitRowwiseQuantized operator. The input is expected to first have
quantized values, then 2-byte fp16 scale and 1-byte zero_offset. The output is a
matrix containing only the values, but de-quantized. De-quantization is
performed by multiplying each value by its row's scale and zero_point
parameters. The de-quantized values will thus not be exactly equal to
the original, un-quantized floating point values.
)DOC")
.Input(
0,
"scale_bias_quantized_input",
"Fused scale, bias and quantized data")
.Output(0, "float_output", "Float32 data");
NO_GRADIENT(Fused2BitRowwiseQuantizedToFloat);
REGISTER_CPU_OPERATOR(
Fused2BitRowwiseQuantizedToHalf,
FusedNBitRowwiseQuantizedToFloatOp<2, at::Half, internal::convertfp32fp16>);
OPERATOR_SCHEMA(Fused2BitRowwiseQuantizedToHalf)
.NumInputs(1)
.NumOutputs(1)
.TensorInferenceFunction([](const OperatorDef& /* def */,
const vector<TensorShape>& in) {
vector<TensorShape> out;
TensorShape X = in[0];
X.set_dims(
X.dims().size() - 1,
(X.dims(X.dims().size() - 1) - 2 * sizeof(at::Half)) * 4);
out.push_back(std::move(X));
out[0].set_data_type(TensorProto_DataType_FLOAT16);
return out;
})
.SetDoc(R"DOC(
De-quantizes the result of the
FloatToFused2BitRowwiseQuantized operator. The input is expected to first have
quantized values, then 2-byte fp16 scale and 1-byte zero_offset. The output is a
matrix containing only the values, but de-quantized. De-quantization is
performed by multiplying each value by its row's scale and zero_point
parameters. The de-quantized values will thus not be exactly equal to
the original, un-quantized floating point values.
)DOC")
.Input(
0,
"scale_bias_quantized_input",
"Fused scale, bias and quantized data")
.Output(0, "float16_output", "Float16 data");
NO_GRADIENT(Fused2BitRowwiseQuantizedToHalf);
REGISTER_CPU_OPERATOR_WITH_ENGINE(
FloatToFused2BitRowwiseQuantized,
GREEDY,
FloatToFusedNBitRowwiseQuantizedOp<
2,
float,
internal::convertfp32fp32,
true /*GREEDY*/>);
REGISTER_CPU_OPERATOR_WITH_ENGINE(
HalfToFused2BitRowwiseQuantized,
GREEDY,
FloatToFusedNBitRowwiseQuantizedOp<
2,
at::Half,
internal::convertfp16fp32,
true /*GREEDY*/>);
} // namespace caffe2
|