1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
|
#ifndef GATHER_OP_H_
#define GATHER_OP_H_
#include "caffe2/core/context.h"
#include "caffe2/core/operator.h"
#include <c10/util/irange.h>
namespace caffe2 {
// This maintains index-mapping functions shared by Gather and BatchGather ops.
namespace gather_helper {
// New shape is concatenation:
// [data dims before axis] + [indices dims] + [data dims after axis]
template <typename IndexType, typename DataDimsVec, typename IndexDimsVec>
static vector<IndexType> calc_output_shape_vector(
const DataDimsVec& data_dims,
const IndexDimsVec& indices_dims,
int axis,
bool match_outer) {
vector<IndexType> shape;
// If the dimension we are indexing is empty, just use data_dims as shape.
// This replicates behavior in (https://github.com/pytorch/pytorch/pull/13781)
// needed to allow workflows with empty batch to succeed.
if (data_dims[axis] == 0) {
shape.insert(shape.end(), data_dims.begin(), data_dims.end());
} else {
shape.insert(shape.end(), data_dims.begin(), data_dims.begin() + axis);
if (match_outer) {
shape.insert(
shape.end(), indices_dims.begin() + axis, indices_dims.end());
} else {
shape.insert(shape.end(), indices_dims.begin(), indices_dims.end());
}
shape.insert(shape.end(), data_dims.begin() + axis + 1, data_dims.end());
}
return shape;
}
// Check that indices fall within dimension array size with CAFFE_ENFORCE.
template <typename IndexType>
static void check_indexarray_range(
const IndexType* indices,
int64_t n,
IndexType indexing_axis_dim,
bool wrap_indices) {
//
for (const auto i : c10::irange(n)) {
auto idx = indices[i];
if (wrap_indices && idx < 0) {
idx = idx + indexing_axis_dim;
}
CAFFE_ENFORCE(
0 <= idx && idx < indexing_axis_dim,
"INDICES element is out of DATA bounds, id=",
idx,
" axis_dim=",
indexing_axis_dim);
}
}
// Actual gather implementation - resizes output and copies indexed data.
template <typename Index, typename Context>
static bool gather_impl(
Operator<Context>* op,
int dataIdx,
int indicesIdx,
int outputIdx,
int axis,
bool wrap_indices,
bool match_outer) {
// If we endup using it on GPU doing O(N) memcpy is probably not best :)
// TODO: implement prefetching if it starts mattering (TF does it)
const Tensor& data = op->Input(dataIdx);
const Tensor& indices = op->Input(indicesIdx);
const TypeMeta dataType = data.dtype();
size_t item_bytesize = dataType.itemsize();
// ONNX allows negative axis to index from the back, valid range: [-r, r].
if (axis < 0) {
axis = data.dim() + axis;
}
CAFFE_ENFORCE_GE(data.dim(), axis + 1, "DATA should be at least [axis+1]-D");
CAFFE_ENFORCE_GE(axis, 0, "Axis should be non-negative");
CAFFE_ENFORCE_LT(axis, data.dim(), "Axis out of range");
// New shape:
// [data dims before axis] + [indices dims] + [data dims after axis]
vector<int64_t> shape = calc_output_shape_vector<int64_t>(
data.sizes(), indices.sizes(), axis, match_outer);
Tensor* output = op->Output(outputIdx, shape, at::dtype(dataType));
auto out = static_cast<char*>(output->raw_mutable_data(dataType));
// Succeed if size of output is zero, which can happen for empty batch which
// would have data dimension size of 0.
// This *must* be done AFTER output->raw_mutable_data() above as that has
// important allocation side effect that we must see.
if (output->numel() == 0) {
return true;
}
const Index* idxs = indices.template data<Index>();
auto src_base = static_cast<const char*>(data.raw_data());
auto outer_dims_product = data.size_to_dim(axis);
auto block_size = data.size_from_dim(axis + 1);
auto block_bytesize = block_size * item_bytesize;
auto src_indexing_axis_dim = data.size(axis);
auto src_batch_bytesize = data.size_from_dim(axis) * item_bytesize;
// Treat indices as a single block even if they have multiple dimensions.
// The "gathered batch" is a cumulative result combining indexed blocks.
auto idx_inner_dims_product = indices.size_from_dim(axis);
auto N = indices.numel();
if (match_outer) {
CAFFE_ENFORCE_GE(axis, 1, "Axis should be at least 1");
for (const auto i : c10::irange(axis)) {
CAFFE_ENFORCE_EQ(
data.size(i),
indices.size(i),
"INDICES must have the same outer dims as DATA (before dim AXIS)");
}
N = idx_inner_dims_product;
}
auto gathered_batch_bytesize = N * block_size * item_bytesize;
check_indexarray_range<Index>(idxs, N, src_indexing_axis_dim, wrap_indices);
// Special-case single-float copy for efficiency
if (data.template IsType<float>() && block_size == 1) {
for (const auto batch : c10::irange(outer_dims_product)) {
const float* src_floats =
(const float*)(src_base + batch * src_batch_bytesize);
float* dst_floats = (float*)(out + batch * gathered_batch_bytesize);
for (const auto i : c10::irange(N)) {
auto idx = idxs[i];
if (match_outer) {
idx = idxs[batch * idx_inner_dims_product + i];
}
if (wrap_indices && idx < 0) {
idx = idx + src_indexing_axis_dim;
}
dst_floats[i] = src_floats[idx];
}
}
} else {
// outer_dims_product specifies how many times we repeat inner dimensions,
// so we just iterate over it to cover all outer dimensions.
for (const auto batch : c10::irange(outer_dims_product)) {
for (const auto i : c10::irange(N)) {
auto idx = idxs[i];
if (match_outer) {
idx = idxs[batch * idx_inner_dims_product + i];
}
if (wrap_indices && idx < 0) {
idx = idx + src_indexing_axis_dim;
}
auto src = src_base + batch * src_batch_bytesize + idx * block_bytesize;
auto dst = out + batch * gathered_batch_bytesize + i * block_bytesize;
op->getContext()->CopyItemsSameDevice(dataType, block_size, src, dst);
}
}
}
return true;
}
} // namespace gather_helper
template <class Context>
class GatherOp : public Operator<Context> {
public:
USE_OPERATOR_CONTEXT_FUNCTIONS;
template <class... Args>
explicit GatherOp(Args&&... args)
: Operator<Context>(std::forward<Args>(args)...),
OP_SINGLE_ARG(int, "axis", axis_, 0),
OP_SINGLE_ARG(bool, "match_outer", match_outer_, false) {
// TBD: We may want to fix the old index wrap behaviour once we have
// operator versioning, to only apply it when needed as otherwise its likely
// an error.
// Right now, we apply index wrapping by default only to axis == 0,
// since we have ONNX conversion code that uses it. For other ops it
// needs to be specified explicitly with argument or you don't get it.
if (OperatorBase::HasArgument("wrap_indices")) {
wrap_indices_ = Operator<Context>::template GetSingleArgument<bool>(
"wrap_indices", (false));
} else {
wrap_indices_ = (axis_ == 0) ? true : false;
}
}
virtual ~GatherOp() noexcept {}
bool RunOnDevice() override {
return DispatchHelper<TensorTypes<int32_t, int64_t>>::call(
this, this->template Input<Tensor>(INDICES, CPU));
}
template <typename Index>
bool DoRunWithType() {
return gather_helper::gather_impl<Index, Context>(
this, DATA, INDICES, 0, axis_, wrap_indices_, match_outer_);
}
INPUT_TAGS(DATA, INDICES);
protected:
int axis_;
bool wrap_indices_;
bool match_outer_;
};
} // namespace caffe2
#endif // GATHER_OP_H_
|